Skip to main content
Log in

Metal-support interaction controlled migration and coalescence of supported particles

  • Article
  • Special Topic: Current Progress in Solid Mechanics and Physical Mechanics
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The particle migration and coalescence (PMC) kinetics of a supported metal are the main deactivation mechanisms restricting the successful industrialization of nanoparticles, but the theoretical insights regarding these kinetics are lacking. One key issue is the lack of a physical model to predict the effects of metal-support interaction (MSI) on PMC kinetics. In this paper, we report a theoretical study of PMC kinetics and their dependence on MSI. A new particle diffusion model is proposed based on the surface premelting hypothesis that considers the contact angle of a hemispherical particle on the support. Enhanced MSI suppresses PMC by increasing the radius of curvature and the interfacial adhesion energy, even though the accompanying reduction in the geometry factor partially promotes PMC kinetics. The increased surface energy increases the chemical potential of the atoms in the particle, which is conducive to PMC; an increased surface energy also results in enhanced MSI, which suppresses PMC. The competition between these two contradictory effects leads to a critical contact angle where the surface energy has no influence on the diffusion and resulting PMC kinetics. The proposed diffusion theory mode lincluding the effects of the support and the corresponding kinetic simulations, shed light onto the support-dependence of PMC kinetics and provide a foundation for further optimization and design of supported particles with better stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hansen T W, Delariva A T, Challa S R, et al. Sintering of catalytic nanoparticles: Particle migration or ostwald ripening? Acc Chem Res, 2013, 46: 1720–1730

    Article  Google Scholar 

  2. Farmer J A, Campbell C T. Ceria maintains smaller metal catalyst particles by strong metal-support bonding. Science, 2010, 329: 933–936

    Article  Google Scholar 

  3. Wanke S E, Flynn P C. The sintering of supported metal catalysts. Catal Rev, 1975, 12: 93–135

    Article  Google Scholar 

  4. Astier M, Teichner S J, Vergnon P. Sintering and catalysis. In: Kuczynski G C, ed. Sintering and Catalysis. Materials Science Research. Boston: Springer, 1975. 10: 63–81

    Chapter  Google Scholar 

  5. Wynblatt P, Gjostein N A. Supported metal crystallites. Prog Solid State Chem, 1975, 9: 21–58

    Article  Google Scholar 

  6. Tao F F, Crozier P A. Atomic-scale observations of catalyst structures under reaction conditions and during catalysis. Chem Rev, 2016, 116: 3487–3539

    Article  Google Scholar 

  7. DeLaRiva A T, Hansen T W, Challa S R, et al. In situ transmission electron microscopy of catalyst sintering. J Catal, 2013, 308: 291–305

    Article  Google Scholar 

  8. Hu S, Li W X. Theoretical investigation of metal-support interactions on ripening kinetics of supported particles. ChemNanoMat, 2018, 4: 510–517

    Article  Google Scholar 

  9. Liu J C, Wang Y G, Li J. Toward rational design of oxide-supported single-atom catalysts: Atomic dispersion of gold on ceria. J Am Chem Soc, 2017, 139: 6190–6199

    Article  Google Scholar 

  10. Xu H, Cheng D, Cao D, et al. A universal principle for a rational design of single-atom electrocatalysts. Nat Catal, 2018, 1: 339–348

    Article  Google Scholar 

  11. O’Connor N J, Jonayat A S M, Janik M J, et al. Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nat Catal, 2018, 1: 531–539

    Article  Google Scholar 

  12. Liu Z P, Jenkins S J, King D A. Role of nanostructured dual-oxide supports in enhanced catalytic activity: Theory of CO oxidation over Au/IrO2/TiO2. Phys Rev Lett, 2004, 93: 156102

    Article  Google Scholar 

  13. Wahlström E, Lopez N, Schaub R, et al. Bonding of gold nanoclusters to oxygen vacancies on rutile TiO2(110). Phys Rev Lett, 2003, 90: 026101

    Article  Google Scholar 

  14. Sanz-Navarro C F, Åstrand P O, Chen D, et al. Molecular dynamics simulations of carbon-supported Ni clusters using the reax reactive force field. J Phys Chem C, 2008, 112: 12663–12668

    Article  Google Scholar 

  15. Li C, Huang J, Li Z. A relation for nanodroplet diffusion on smooth surfaces. Sci Rep, 2016, 6: 26488

    Article  Google Scholar 

  16. Liu X, Liu M H, Luo Y C, et al. Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation. J Am Chem Soc, 2012, 134: 10251–10258

    Article  Google Scholar 

  17. Ta N, Liu J J, Chenna S, et al. Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring. J Am Chem Soc, 2012, 134: 20585–20588

    Article  Google Scholar 

  18. Lee J, Burt S P, Carrero C A, et al. Stabilizing cobalt catalysts for aqueous-phase reactions by strong metal-support interaction. J Catal, 2015, 330: 19–27

    Article  Google Scholar 

  19. Qiao B, Liang J X, Wang A, et al. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res, 2015, 8: 2913–2924

    Article  Google Scholar 

  20. Tang H, Wei J, Liu F, et al. Strong metal-support interactions between gold nanoparticles and nonoxides. J Am Chem Soc, 2016, 138: 56–59

    Article  Google Scholar 

  21. Zhang S, Plessow P N, Willis J J, et al. Dynamical observation and detailed description of catalysts under strong metal-support interaction. Nano Lett, 2016, 16: 4528–4534

    Article  Google Scholar 

  22. Ruckenstein E, Pulvermacher B. Kinetics of crystallite sintering during heat treatment of supported metal catalysts. AIChE J, 1973, 19: 356–364

    Article  Google Scholar 

  23. Ruckenstein E. Growth kinetics and the size distributions of supported metal crystallites. J Catal, 1973, 29: 224–245

    Article  Google Scholar 

  24. Wang J, Chen S, Cui K, et al. Approach and coalescence of gold nanoparticles driven by surface thermodynamic fluctuations and atomic interaction forces. ACS Nano, 2016, 10: 2893–2902

    Article  Google Scholar 

  25. Luedtke W D, Landman U. Slip diffusion and Lévy flights of an adsorbed gold nanocluster. Phys Rev Lett, 1999, 82: 3835–3838

    Article  Google Scholar 

  26. Lewis L J, Jensen P, Combe N, et al. Diffusion of gold nanoclusters on graphite. Phys Rev B, 2000, 61: 16084–16090

    Article  Google Scholar 

  27. Yoon B, Luedtke W D, Gao J, et al. Diffusion of gold clusters on defective graphite surfaces. J Phys Chem B, 2003, 107: 5882–5891

    Article  Google Scholar 

  28. Celestini F. Diffusion of a liquid nanoparticle on a disordered substrate. Phys Rev B, 2004, 70: 115402

    Article  Google Scholar 

  29. Jensen P, Clément A. J. Lewis L. Diffusion of nanoclusters on nonideal surfaces. Phys E-Low-dimensional Syst NanoStruct, 2004, 21: 71–76

    Article  Google Scholar 

  30. Maruyama Y. Temperature dependence of Lévy-type stick-slip diffusion of a gold nanocluster on graphite. Phys Rev B, 2004, 69: 245408

    Article  Google Scholar 

  31. Chen J, Chan K Y. Size-dependent mobility of platinum cluster on a graphite surface. Mol Simul, 2005, 31: 527–533

    Article  Google Scholar 

  32. Alkis S, Krause J L, Fry J N, et al. Dynamics of Ag clusters on complex surfaces: Molecular dynamics simulations. Phys Rev B, 2009, 79: 121402

    Article  Google Scholar 

  33. Ryu J H, Seo D H, Kim D H, et al. Molecular dynamics simulations of the diffusion and rotation of Pt nanoclusters supported on graphite. Phys Chem Chem Phys, 2009, 11: 503–507

    Article  Google Scholar 

  34. Ma M, Tocci G, Michaelides A, et al. Fast diffusion of water nanodroplets on graphene. Nat Mater, 2016, 15: 66–71

    Article  Google Scholar 

  35. Guerra R, Tartaglino U, Vanossi A, et al. Ballistic nanofriction. Nat Mater, 2010, 9: 634–637

    Article  Google Scholar 

  36. Bogicevic A, Liu S, Jacobsen J, et al. Island migration caused by the motion of the atoms at the border: Size and temperature dependence of the diffusion coefficient. Phys Rev B, 1998, 57: R9459–R9462

    Article  Google Scholar 

  37. Stoldt C R, Jenks C J, Thiel P A, et al. Smoluchowski ripening of Ag islands on Ag(100). J Chem Phys, 1999, 111: 5157–5166

    Article  Google Scholar 

  38. Thiel P A, Shen M, Liu D J, et al. Coarsening of two-dimensional nanoclusters on metal surfaces. J Phys Chem C, 2009, 113: 5047–5067

    Article  Google Scholar 

  39. Kang H C, Thiel P A, Evans J W. Cluster diffusivity: Structure, correlation, and scaling. J Chem Phys, 1990, 93: 9018–9025

    Article  Google Scholar 

  40. Wen J M, Chang S L, Burnett J W, et al. Diffusion of large two-dimensional Ag clusters on Ag(100). Phys Rev Lett, 1994, 73: 2591–2594

    Article  Google Scholar 

  41. Stankic S, Cortes-Huerto R, Crivat N, et al. Equilibrium shapes of supported silver clusters. Nanoscale, 2013, 5: 2448–2453

    Article  Google Scholar 

  42. Mittendorfer F, Seriani N, Dubay O, et al. Morphology of mesoscopic Rh and Pd nanoparticles under oxidizing conditions. Phys Rev B, 2007, 76: 233413

    Article  Google Scholar 

  43. Seriani N, Mittendorfer F. Platinum-group and noble metals under oxidizing conditions. J Phys-Condens Matter, 2008, 20: 184023

    Article  Google Scholar 

  44. Shao X, Prada S, Giordano L, et al. Tailoring the shape of metal Ad-particles by doping the oxide support. Angew Chem Int Ed, 2011, 50: 11525–11527

    Article  Google Scholar 

  45. Sterrer M, Risse T, Heyde M, et al. Crossover from three-dimensional to two-dimensional geometries of Au Nanostructures on thin MgO (001) films: A confirmation of theoretical predictions. Phys Rev Lett, 2007, 98: 206103

    Article  Google Scholar 

  46. Jak M J J, Konstapel C, van Kreuningen A, et al. The influence of substrate defects on the growth rate of palladium nanoparticles on a TiO2(110) surface. Surf Sci, 2001, 474: 28–36

    Article  Google Scholar 

  47. Wallace W T, Min B K, Goodman D W. The stabilization of supported gold clusters by surface defects. J Mol Catal A-Chem, 2005, 228: 3–10

    Article  Google Scholar 

  48. Xu L, Henkelman G, Campbell C T, et al. Pd diffusion on MgO(100): The role of defects and small cluster mobility. Surf Sci, 2006, 600: 1351–1362

    Article  Google Scholar 

  49. Plessow P N, Abild-Pedersen F. Sintering of Pt nanoparticles via volatile PtO2: Simulation and comparison with experiments. ACS Catal, 2016, 6: 7098–7108

    Article  Google Scholar 

  50. Gerber T, Knudsen J, Feibelman P J, et al. CO-induced smoluchowski ripening of Pt cluster arrays on the graphene/Ir(111) Moiré. ACS Nano, 2013, 7: 2020–2031

    Article  Google Scholar 

  51. Matthey D, Wang J G, Wendt S, et al. Enhanced bonding of gold nanoparticles on oxidized TiO2(110). Science, 2007, 315: 1692–1696

    Article  Google Scholar 

  52. Lu P, Campbell C T, Xia Y. A sinter-resistant catalytic system fabricated by maneuvering the selectivity of SiO2 deposition onto the TiO2 surface versus the Pt nanoparticle surface. Nano Lett, 2013, 13: 4957–4962

    Article  Google Scholar 

  53. Zhu H, Ma Z, Overbury S H, et al. Rational design of gold catalysts with enhanced thermal stability: Post modification of Au/TiO2 by amorphous SiO2 decoration. Catal Lett, 2007, 116: 128–135

    Article  Google Scholar 

  54. Qian K, Huang W, Jiang Z, et al. Anchoring highly active gold nanoparticles on SiO2 by CoOx additive. J Catal, 2007, 248: 137–141

    Article  Google Scholar 

  55. Zanella R, Rodríguez-González V, Arzola Y, et al. Au/Y-TiO2 catalyst: High activity and long-term stability in CO oxidation. ACS Catal, 2012, 2: 1–11

    Article  Google Scholar 

  56. Min B K, Wallace W T, Goodman D W. Synthesis of a sinter-resistant, mixed-oxide support for Au nanoclusters. J Phys Chem B, 2004, 108: 14609–14615

    Article  Google Scholar 

  57. Gruber E E. Calculated size distributions for gas bubble migration and coalescence in solids. J Appl Phys, 1967, 38: 243–250

    Article  Google Scholar 

  58. Willertz L E, Shewmon P G. Diffusion of helium gas bubbles in gold and copper foils. MT, 1970, 1: 2217–2223

    Article  Google Scholar 

  59. Morgenstern K, Rosenfeld G, Poelsema B, et al. Brownian motion of vacancy islands on Ag(111). Phys Rev Lett, 1995, 74: 2058–2061

    Article  Google Scholar 

  60. Khare S V, Bartelt N C, Einstein T L. Diffusion of monolayer adatom and vacancy clusters: Langevin analysis and Monte Carlo simulations of their Brownian motion. Phys Rev Lett, 1995, 75: 2148–2151

    Article  Google Scholar 

  61. Jak M J J, Konstapel C, van Kreuningen A, et al. Scanning tunnelling microscopy study of the growth of small palladium particles on TiO2 (110). Surf Sci, 2000, 457: 295–310

    Article  Google Scholar 

  62. Behafarid F, Roldan Cuenya B. Coarsening phenomena of metal nanoparticles and the influence of the support pre-treatment: Pt/TiO2 (110). Surf Sci, 2012, 606: 908–918

    Article  Google Scholar 

  63. Parker S C, Campbell C T. Kinetic model for sintering of supported metal particles with improved size-dependent energetics and applications to Au on TiO2(110). Phys Rev B, 2007, 75: 035430

    Article  Google Scholar 

  64. Levitas V I, Samani K. Size and mechanics effects in surface-induced melting of nanoparticles. Nat Commun, 2011, 2: 284

    Article  Google Scholar 

  65. Taylor A B, Siddiquee A M, Chon J W M. Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion. ACS Nano, 2014, 8: 12071–12079

    Article  Google Scholar 

  66. Kubo R. The fluctuation-dissipation theorem. Rep Prog Phys, 1966, 29: 255–284

    Article  MATH  Google Scholar 

  67. Smoluchowski M V. Drei vorträge über diffusion, brownsche molekularbewegung und koagulation von kolloidteilchen. Physik Zeit, 1916, 17: 557–571

    Google Scholar 

  68. Kandel D. Selection of the scaling solution in a cluster coalescence model. Phys Rev Lett, 1997, 79: 4238–4241

    Article  Google Scholar 

  69. Pluis B, Frenkel D, van der Veen J F. Surface-induced melting and freezing II. A semi-empirical Landau-type model. Surf Sci, 1990, 239: 282–300

    Article  Google Scholar 

  70. Heyraud J C, Métois J J, Bermond J M. Surface melting and equilibrium shape; the case of Pb on graphite. J Cryst Growth, 1989, 98: 355–362

    Article  Google Scholar 

  71. Wang S C, Ehrlich G. Diffusion of large surface clusters: Direct observations on Ir(111). Phys Rev Lett, 1997, 79: 4234–4237

    Article  Google Scholar 

  72. José-Yacaman M, Gutierrez-Wing C, Miki M, et al. Surface diffusion and coalescence of mobile metal nanoparticles. J Phys Chem B, 2005, 109: 9703–9711

    Article  Google Scholar 

  73. Kébaili N, Benrezzak S, Cahuzac P, et al. Diffusion of silver nanoparticles on carbonaceous materials. Cluster mobility as a probe for surface characterization. Eur Phys J D, 2009, 52: 115–118

    Article  Google Scholar 

  74. Bardotti L, Jensen P, Hoareau A, et al. Experimental observation of fast diffusion of large antimony clusters on graphite surfaces. Phys Rev Lett, 1995, 74: 4694–4697

    Article  Google Scholar 

  75. Bardotti L, Jensen P, Hoareau A, et al. Diffusion and aggregation of large antimony and gold clusters deposited on graphite. Surf Sci, 1996, 367: 276–292

    Article  Google Scholar 

  76. Yang W C, Zeman M, Ade H, et al. Attractive migration and coalescence: A significant process in the coarsening of TiSi2 islands on the Si(111) surface. Phys Rev Lett, 2003, 90: 136102

    Article  Google Scholar 

  77. Arcidiacono S, Bieri N R, Poulikakos D, et al. On the coalescence of gold nanoparticles. Int J Multiphase Flow, 2004, 30: 979–994

    Article  MATH  Google Scholar 

  78. Asoro M A, Kovar D, Shao-Horn Y, et al. Coalescence and sintering of Pt nanoparticles: In situ observation by aberration-corrected HAADF STEM. Nanotechnology, 2010, 21: 025701

    Article  Google Scholar 

  79. Yuk J M, Jeong M, Kim S Y, et al. In situ atomic imaging of coalescence of Au nanoparticles on graphene: Rotation and grain boundary migration. Chem Commun, 2013, 49: 11479

    Article  Google Scholar 

  80. Jiang Y, Wang Y, Zhang Y Y, et al. Direct observation of Pt nanocrystal coalescence induced by electron-excitation-enhanced van der Waals interactions. Nano Res, 2014, 7: 308–314

    Article  Google Scholar 

  81. Li J, Wang Z, Chen C, et al. Atomic-scale observation of migration and coalescence of Au nanoclusters on YSZ surface by aberration-corrected STEM. Sci Rep, 2015, 4: 5521

    Article  Google Scholar 

  82. Niu K Y, Liao H G, Zheng H. Visualization of the coalescence of bismuth nanoparticles. Microsc Microanal, 2014, 20: 416–424

    Article  Google Scholar 

  83. Goudeli E, Pratsinis S E. Crystallinity dynamics of gold nanoparticles during sintering or coalescence. AIChE J, 2016, 62: 589–598

    Article  Google Scholar 

  84. Han Y, Stoldt C R, Thiel P A, et al. Ab initio thermodynamics and kinetics for coalescence of two-dimensional nanoislands and nanopits on metal (100) surfaces. J Phys Chem C, 2016, 120: 21617–21630

    Article  Google Scholar 

  85. Zheng H, Smith R K, Jun Y W, et al. Observation of single colloidal platinum nanocrystal growth trajectories. Science, 2009, 324: 1309–1312

    Article  Google Scholar 

  86. Pluis B, van der Gon A W D, van der Veen J F, et al. Surface-induced melting and freezing I. Medium-energy ion scattering investigation of the melting of Pb“hkl” crystal faces. Surf Sci, 1990, 239: 265–281

    Article  Google Scholar 

  87. Aydin C, Lu J, Browning N D, et al. A “smart” catalyst: Sinter-resistant supported iridium clusters visualized with electron microscopy. Angew Chem Int Ed, 2012, 51: 5929–5934

    Article  Google Scholar 

  88. Hu S, Li W X. Influence of particle size distribution on lifetime and thermal stability of Ostwald ripening of supported particles. ChemCatChem, 2018, 10: 2900–2907

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Xue Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Li, WX. Metal-support interaction controlled migration and coalescence of supported particles. Sci. China Technol. Sci. 62, 762–772 (2019). https://doi.org/10.1007/s11431-018-9407-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9407-3

Navigation