The electromagnetic wave experiment for CSES mission: Search coil magnetometer

Abstract

The seismic activities on the Earth can produce a disturbance of the electromagnetic field and particles in the ionosphere. The search coil magnetometer (SCM) mounted on China Seismo-Electromagnetic satellite (CSES) is designed to measure the magnetic field fluctuation of low frequency electromagnetic waves in the frequency range of 10 Hz–20 kHz. The SCM comprises a three-axis search coil sensor mounted on a 4.5 m boom and an electronic box inside satellite module. The sampling rate of the SCM is 51.2 kHz and the time resolution of the power spectrum density (PSD) is 2 s. The frequency resolution is 12.5 Hz. There are three operation modes: survey, detailed survey and calibration. In the survey mode, the SCM can provide a PSD in the whole frequency range of 10 Hz–20 kHz and wave forms in the low frequency range below 2 kHz while in the detailed survey mode the SCM can provide both PSD and wave forms in the whole frequency range of 10 Hz–20 kHz. The sensitivity of the SCM instrument is 5.0×10−4 nT Hz−1/2 at 10 Hz, 5.0×10−5 nT Hz−1/2 at 200 Hz, 3.4×10−5 nT Hz−1/2 at 2 kHz and 1.1×10−4 nT Hz−1/2 at 20 kHz. The telemetry rate is ∼0.85 Mbps in the survey mode and ∼3.0 Mbps in the detailed survey mode. The phase difference between three axes can be made generally with a precision of less than 1.0°. The dynamic range of the SCM instrument is over 100 dB. The orthogonality of three mechanical axes of search coil senor is better than 0.13°. The performance of SCM can satisfy the requirement of scientific objectives of CSES mission.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Parrot M. Statistical study of ELF/VLF emissions recorded by a low-altitude satellite during seismic events. J Geophys Res, 1994, 99: 23339–23347

    Article  Google Scholar 

  2. 2

    Hobara Y, Lefeuvre F, Parrot M, et al. Low-latitude ionospheric turbulence observed by Aureol-3 satellite. Ann Geophys, 2005, 23: 1259–1270

    Article  Google Scholar 

  3. 3

    Molchanov O, Rozhnoi A, Solovieva M, et al. Global diagnostics of the ionospheric perturbations related to the seismic activity using the VLF radio signals collected on the DEMETER satellite. Nat Hazards Earth Syst Sci, 2006, 6: 745–753

    Article  Google Scholar 

  4. 4

    Němec F, Santolík O, Parrot M. Decrease of intensity of ELF/VLF waves observed in the upper ionosphere close to earthquakes: A statistical study. J Geophys Res, 2009, 114: A04303

    Google Scholar 

  5. 5

    Zhang X, Zeren Z, Parrot M, et al. ULF/ELF ionospheric electric field and plasma perturbations related to Chile earthquakes. Adv Space Res, 2011, 47: 991–1000

    Article  Google Scholar 

  6. 6

    Zeren Z, Shen X H, Cao J B, et al. Statistical analysis of ELF/VLF magnetic field disturbances before major earthquakes. Chin J Geophys-Chin Ed, 2012, 55: 3699–3708

    Google Scholar 

  7. 7

    Zeren Z, Shen X H, Zheng X M, et al. Possible ionospheric electromagnetic perturbations induced by the Ms7.1 Yushu earthquake. Earth Moon Planets, 2012, 108: 231–241

    Article  Google Scholar 

  8. 8

    Shen X, Zeren Z, Zhao S, et al. VLF radio wave anomalies associated with the 2010 Ms 7.1 Yushu earthquake. Adv Space Res, 2017, 59: 2636–2644

    Article  Google Scholar 

  9. 9

    Henderson T R, Sonwalkar V S, Helliwell R A, et al. A search for ELF/VLF emissions induced by earthquakes as observed in the ionosphere by the DE 2 satellite. J Geophys Res, 1993, 98: 9503–9514

    Article  Google Scholar 

  10. 10

    Rodger C J, Thomson N R, Dowden R L. A search for ELF/VLF activity associated with earthquakes using ISIS satellite data. J Geophys Res, 1996, 101: 13369–13378

    Article  Google Scholar 

  11. 11

    Clilverd M A, Rodger C J, Thomson N R. Investigating seismoionospheric effects on a long subionospheric path. J Geophys Res, 2009, 104: 28171–28179

    Article  Google Scholar 

  12. 12

    LeDocq M J, Gurnett D A, Hospodarsky G B. Chorus source locations from VLF Poynting flux measurements with the Polar spacecraft. Geophys Res Lett, 1998, 25: 4063–4066

    Article  Google Scholar 

  13. 13

    Masson A, Inan U S, Laakso H, et al. Cluster observations of mid-latitude hiss near the plasmapause. Ann Geophys, 2004, 22: 2565–2575

    Article  Google Scholar 

  14. 14

    Meredith N P, Horne R B, Thorne R M, et al. Substorm dependence of plasmaspheric hiss. J Geophys Res, 2004, 109: A06209

    Article  Google Scholar 

  15. 15

    Santolík O, Gurnett D A, Pickett J S. Multipoint investigation of the source region of storm-time chorus. Ann Geophys, 2004, 22: 2555–2563

    Article  Google Scholar 

  16. 16

    Wei X H, Cao J B, Zhou G C, et al. Cluster observations of waves in the whistler frequency range associated with magnetic reconnection in the Earth’s magnetotail. J Geophys Res, 2007, 112: A10225

    Article  Google Scholar 

  17. 17

    Yang J Y, Cao J B, Yan C X, et al. The mid-high latitude whistler mode chorus waves observed around substorm onsets. Sci China Ser E-Tech Sci, 2008, 51: 1648–1658

    Article  Google Scholar 

  18. 18

    Fu H S, Cao J B, Zong Q G, et al. The role of electrons during chorus intensification: Energy source and energy loss. J Atmos Sol-Terr Phys, 2012, 80: 37–47

    Article  Google Scholar 

  19. 19

    Fu H S, Cao J B, Mozer F S, et al. Chorus intensification in response to interplanetary shock. J Geophys Res, 2012, 117: A01203

    Google Scholar 

  20. 20

    Cao J B, Wei X H, Duan A Y, et al. Slow magnetosonic waves detected in reconnection diffusion region in the Earth’s magnetotail. J Geophys Res Space Phys, 2013, 118: 1659–1666

    Article  Google Scholar 

  21. 21

    Li L Y, Yu J, Cao J B, et al. Rapid loss of the plasma sheet energetic electrons associated with the growth of whistler mode waves inside the bursty bulk flows. J Geophys Res Space Phys, 2013, 118: 7200–7210

    Article  Google Scholar 

  22. 22

    Zeren Z, Cao J B, Liu W L, et al. Storm time evolution of ELF/VLF waves observed by DEMETER satellite. J Geophys Res Space Phys, 2014, 119: 2612–2622

    Article  Google Scholar 

  23. 23

    Yu J, Li L Y, Cao J B, et al. Propagation characteristics of plasmaspheric hiss: Van Allen Probe observations and global empirical models. J Geophys Res Space Phys, 2017, 122: 4156–4167

    Article  Google Scholar 

  24. 24

    Hayakawa M, Kasahara Y, Nakamura T, et al. A statistical study on the correlation between lower ionospheric perturbations as seen by subionospheric VLF/LF propagation and earthquakes. J Geophys Res, 2010, 115: A09305

    Article  Google Scholar 

  25. 25

    Maurya A K, Singh R, Veenadhari B, et al. Sub-ionospheric very low frequency perturbations associated with the 12 May 2008 M = 7.9 Wenchuan earthquake. Nat Hazards Earth Syst Sci, 2013, 13: 2331–2336

    Article  Google Scholar 

  26. 26

    Rozhnoi A, Solovieva M, Parrot M, et al. VLF/LF signal studies of the ionospheric response to strong seismic activity in the Far Eastern region combining the DEMETER and ground-based observations. Phys Chem Earth Parts A/B/C, 2015, 85–86: 141–149

    Article  Google Scholar 

  27. 27

    Battiston R, Vitale V. First evidence for correlations between electron fluxes measured by NOAA-POES satellites and large seismic events. Nucl Phys B-Proc Supp, 2013, 243–244: 249–257

    Article  Google Scholar 

  28. 28

    Tao D, Battiston R, Vitale V, et al. A new method to study the time correlation between Van Allen Belt electrons and earthquakes. Int J Remote Sens, 2016, 37: 5304–5319

    Article  Google Scholar 

  29. 29

    Li L, Cao J, Zhou G. Combined acceleration of electrons by whistler-mode and compressional ULF turbulences near the geosynchronous orbit. J Geophys Res, 2005, 110: A03203

    Article  Google Scholar 

  30. 30

    Li L Y, Yu J, Cao J B, et al. Roles of whistler mode waves and magnetosonic waves in changing the outer radiation belt and the slot region. J Geophys Res Space Phys, 2017, 122: 5431–5448

    Article  Google Scholar 

  31. 31

    Fu H S, Cao J B, Cully C M, et al. Whistler-mode waves inside flux pileup region: Structured or unstructured? J Geophys Res Space Phys, 2014, 119: 9089–9100

    Article  Google Scholar 

  32. 32

    Yu J, Li L Y, Cao J B, et al. Multiple loss processes of relativistic electrons outside the heart of outer radiation belt during a storm sudden commencement. J Geophys Res Space Phys, 2015, 120: 10275–10288

    Article  Google Scholar 

  33. 33

    Cao J B, Liu Z X, Yang J Y, et al. First results of low frequency electromagnetic wave detector of TC-2/Double Star program. Ann Geophys, 2005, 23: 2803–2811

    Article  Google Scholar 

  34. 34

    Cornilleau-Wehrlin N, Alleyne H S, Yearby K H, et al. The STAFFDWP wave instrument on the DSP equatorial spacecraft: Description and first results. Ann Geophys, 2005, 23: 2785–2801

    Article  Google Scholar 

  35. 35

    Séran H C, Fergeau P. An optimized low-frequency three-axis search coil magnetometer for space research. Rev Sci Instrum, 2005, 76: 044502

    Article  Google Scholar 

  36. 36

    Parrot M, Benoist D, Berthelier J J, et al. The magnetic field experiment IMSC and its data processing onboard DEMETER: Scientific objectives, description and first results. Planet Space Sci, 2006, 54: 441–455

    Article  Google Scholar 

  37. 37

    Coillot C, Moutoussamy J, Leroy P, et al. Improvements on the design of search coil magnetometer for space experiments. Sensor Lett, 2007, 5: 167–170

    Article  Google Scholar 

  38. 38

    Grosz A, Paperno E, Amrusi S, et al. Minimizing crosstalk in three-axial induction magnetometers. Rev Sci Instrum, 2010, 81: 125106

    Article  Google Scholar 

  39. 39

    Grosz A, Paperno E, Amrusi S, et al. A three-axial search coil magnetometer optimized for small size, low power, and low frequencies. IEEE Sensor J, 2011, 11: 1088–1094

    Article  Google Scholar 

  40. 40

    Kasaba Y, Bougeret J L, Blomberg L G, et al. The Plasma Wave Investigation (PWI) onboard the BepiColombo/MMO: First measurement of electric fields, electromagnetic waves, and radio waves around Mercury. Planet Space Sci, 2010, 58: 238–278

    Article  Google Scholar 

  41. 41

    Paperno E, Grosz A, Amrusi S, et al. Compensation of crosstalk in three-axial induction magnetometers. IEEE Trans Instrum Meas, 2011, 60: 3416–3422

    Article  Google Scholar 

  42. 42

    Le Contel O, Leroy P, Roux A, et al. The search-coil magnetometer for MMS. Space Sci Rev, 2016, 199: 257–282

    Article  Google Scholar 

  43. 43

    Torbert R B, Russell C T, Magnes W, et al. The FIELDS instrument suite on MMS: Scientific objectives, measurements, and data products. Space Sci Rev, 2016, 199: 105–135

    Article  Google Scholar 

  44. 44

    Shen X H, Zhang X M, Yuan S G, et al. The state-of-the-art of the China seismo-electeomagnetic satellite mission. Sci China Tech Sci, 2018, 61: 634–642

    Google Scholar 

  45. 45

    Chen B J, Zhou B, Magnes W, et al. High precision magnetometer for geomagnetic exploration in China seismo-electromagnetic satellite. Sci China Tech Sci, 2018, 61: 659–668

    Google Scholar 

  46. 46

    Lin J, Shen X H, Wang L W. CSES GNSS ionospheric inversion technique, validation and error analysis. Sci China Tech Sci, 2018, 61: 669–677

    Google Scholar 

  47. 47

    Ambrosi G, Bartocci S, Basara L, et al. Seismo-induced perturbations of the inner Van Allen belt: The particle detector of the CSES mission for the investigation. Sci China Tech Sci, 2018, 61: 643–652

    Google Scholar 

  48. 48

    Cao J B, Yang J Y, Yuan S G, et al. In-flight observations of electromagnetic interferences emitted by satellite. Sci China Ser E-Tech Sci, 2009, 52: 2112–2118

    Article  Google Scholar 

  49. 49

    Santolík O, Němec F, Parrot M, et al. Analysis methods for multi-component wave measurements on board the DEMETER spacecraft. Planet Space Sci, 2006, 54: 512–527

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to JinBin Cao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Zeng, L., Zhan, F. et al. The electromagnetic wave experiment for CSES mission: Search coil magnetometer. Sci. China Technol. Sci. 61, 653–658 (2018). https://doi.org/10.1007/s11431-018-9241-7

Download citation

Keywords

  • search coil magnetometer
  • CSES
  • electromagnetic wave
  • earthquake
  • precursor