The HEPD particle detector of the CSES satellite mission for investigating seismo-associated perturbations of the Van Allen belts

  • Giovanni Ambrosi
  • Simona Bartocci
  • Laurent Basara
  • Roberto Battiston
  • William J. Burger
  • Luca Carfora
  • Guido Castellini
  • Piero Cipollone
  • Livio Conti
  • Andrea Contin
  • Cinzia De Donato
  • Cristian De Santis
  • Francesco M. Follega
  • Cristina Guandalini
  • Maria Ionica
  • Roberto Iuppa
  • Giuliano Laurenti
  • Ignazio Lazzizzera
  • Mauro Lolli
  • Christian Manea
  • Laura Marcelli
  • Giuseppe Masciantonio
  • Matteo Mergé
  • Giuseppe Osteria
  • Lorenzo Pacini
  • Francesco Palma
  • Federico Palmonari
  • Beatrice Panico
  • Laura Patrizii
  • Francesco Perfetto
  • Piergiorgio Picozza
  • Michele Pozzato
  • Matteo Puel
  • Irina Rashevskaya
  • Ester Ricci
  • Marco Ricci
  • Sergio Bruno Ricciarini
  • Valentina Scotti
  • Alessando Sotgiu
  • Roberta Sparvoli
  • Bruno Spataro
  • Vincenzo Vitale
Article Special Topic: China Seismo-Electromagnetic Satellite
  • 6 Downloads

Abstract

CSES (China Seismo-Electromagnetic Satellite) is a mission developed by CNSA (Chinese National Space Administration) and ASI (Italian Space Agency), to investigate the near-Earth electromagnetic, plasma and particle environment, for studying the seismo-associated disturbances in the ionosphere-magnetosphere transition zone. The anthropogenic and electromagnetic noise, as well as the natural non-seismic electromagnetic emissions is mainly due to tropospheric activity. In particular, the mission aims to confirming the existence of possible temporal correlations between the occurrence of earthquakes for medium and strong magnitude and the observation in space of electromagnetic perturbations, plasma variations and precipitation of bursts with high- energy charged particles from the inner Van Allen belt. In this framework, the high energy particle detector (HEPD) of the CSES mission has been developed by the Italian LIMADOU Collaboration. HEPD is an advanced detector based on a tower of scintillators and a silicon tracker that provides good energy and angular resolution and a wide angular acceptance, for electrons of 3–100 MeV, protons of 30–200 MeV and light nuclei up to the oxygen. CSES satellite has been launched on February 2nd, 2018 from the Jiuquan Satellite Launch Center (China).

Keywords

earthquake seismic-precursors particle detector Van Allen belts magnetosphere ionosphere space weather cosmic rays 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lay T, Wallace T C. Modern Global Seismology. San Diego: Academic Press, 1995Google Scholar
  2. 2.
    Mjachkin V I, Brace W F, Sobolev G A, et al. Two models for earthquake forerunners. Pure Appl Geophys, 1975, 113: 169–181CrossRefGoogle Scholar
  3. 3.
    Pulinets S, Boyarchuk K. Ionospheric Precursors of Earthquakes. New York: Springer, 2004Google Scholar
  4. 4.
    Cicerone R D, Ebel J E, Britton J. A systematic compilation of earthquake precursors. Tectonophysics, 2009, 476: 371–396CrossRefGoogle Scholar
  5. 5.
    Freund F T, Kulahci I G, Cyr G, et al. Air ionization at rock surface and pre-earthquake signals. J Atmos Sol-Terr Phys, 2009, 71: 1824–1834CrossRefGoogle Scholar
  6. 6.
    Freund F T. Toward a unified solid state theory for pre-earthquake signals. Acta Geophys, 2010, 58: 719–766CrossRefGoogle Scholar
  7. 7.
    Hayakawa M. Earthquake Prediction Studies: Seismo Electromagnetics. Tokyo: Terrapub, 2013. 794Google Scholar
  8. 8.
    Pulinets S A, Ouzounov D P, Karelin A V, et al. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphereatmosphere-ionosphere-magnetosphere system. Geomagn Aeron, 2015, 55: 521–538CrossRefGoogle Scholar
  9. 9.
    Sgrigna V, Buzzi A, Conti L, et al. Seismo-induced effects in the nearearth space: Combined ground and space investigations as a contribution to earthquake prediction. Tectonophysics, 2007, 431: 153–171CrossRefGoogle Scholar
  10. 10.
    De Santis A, De Franceschi G, Spogli L, et al. Geospace perturbations induced by the Earth: The state of the art and future trends. Phys Chem Earth Parts A/B/C, 2015, 85–86: 17–33CrossRefGoogle Scholar
  11. 11.
    Warwick J W, Stoker C, Meyer T R. Radio emission associated with rock fracture—Possible application to the great Chilean earthquake of May 22, 1960. J Geophys Res, 1982, 87: 2851–2859CrossRefGoogle Scholar
  12. 12.
    Davies K, Baker D M. Ionospheric effects observed around the time of the Alaskan Earthquake of March 28, 1964. J Geophys Res, 1965, 70: 2251–2253CrossRefGoogle Scholar
  13. 13.
    Varotsos P, Alexopoulos K, Lazaridou-Varotsou M, et al. Earthquake predictions issued in Greece by seismic electric signals since February 6, 1990. Tectonophysics, 1993, 224: 269–288CrossRefGoogle Scholar
  14. 14.
    Kopytenko Y A, Matiashvili T G, Voronov P M, et al. Detection of ultra-low-frequency emissions connected with the Spitak earthquake and its aftershock activity, based on geomagnetic pulsations data at Dusheti and Vardzia observatories. Phys Earth Planet Inter, 1993, 77: 85–95CrossRefGoogle Scholar
  15. 15.
    Fraser-Smith A C, McGill P R, Helliwell R A, et al. Ultra-low frequency magnetic field measurements in southern California during the Northridge Earthquake of 17 January 1994. Geophys Res Lett, 1994, 21: 2195–2198CrossRefGoogle Scholar
  16. 16.
    Ohta K, Umeda K, Watanabe N, et al. ULF/ELF emissions observed in Japan, possibly associated with the Chi-Chi earthquake in Taiwan. Nat Hazards Earth Syst Sci, 2001, 1: 37–42CrossRefGoogle Scholar
  17. 17.
    Ismaguilov V S, Kopytenko Y A, Hattori K, et al. ULF magnetic emissions connected with under sea bottom earthquakes. Nat Hazards Earth Syst Sci, 2001, 1: 23–31CrossRefGoogle Scholar
  18. 18.
    Oike K, Ogawa T. Electromagnetic radiations from shallow earthquakes observed in the LF range. J Geomagn Geoelec, 1986, 38: 1031–1040CrossRefGoogle Scholar
  19. 19.
    Johnston M J S. Review of electric and magnetic fields accompanying seismic and volcanic activity. Surveys Geophys, 1997, 18: 441–476CrossRefGoogle Scholar
  20. 20.
    Uyeda S, Al-Damegh K S, Dologlou E, et al. Some relationship between VAN seismic electric signals (SES) and earthquake parameters. Tectonophysics, 1999, 304: 41–55CrossRefGoogle Scholar
  21. 21.
    Eftaxias K, Kapiris P, Polygiannakis J, et al. Experience of short term earthquake precursors with VLF-VHF electromagnetic emissions. Nat Hazards Earth Syst Sci, 2003, 3: 217–228CrossRefGoogle Scholar
  22. 22.
    Park S K, Johnston M J S, Madden T R, et al. Electromagnetic precursors to earthquakes in the Ulf band: A review of observations and mechanisms. Rev Geophys, 1993, 31: 117–132CrossRefGoogle Scholar
  23. 23.
    Merzer M, Klemperer S L. Modeling low-frequency magnetic-field precursors to the Loma Prieta Earthquake with a precursory increase in fault-zone conductivity. Pure Appl Geophys, 1997, 150: 217–248CrossRefGoogle Scholar
  24. 24.
    Molchanov O A, Hayakawa M. On the generation mechanism of ULF seismogenic electromagnetic emissions. Phys Earth Planet Inter, 1998, 105: 201–210CrossRefGoogle Scholar
  25. 25.
    Surkov V. ULF electromagnetic perturbations resulting from the fracture and dilatancy in the earthquake preparation zone. In: Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes. Tokyo: Terrapub, 1999. 371–382Google Scholar
  26. 26.
    Hayakawa M, Kopytenko Y, Smirnova N, et al. Monitoring ULF magnetic disturbances, and schemes for recognizing earthquake precursors. Phys Chem Earth Part A-Solid Earth Geodesy, 2000, 25: 263–269CrossRefGoogle Scholar
  27. 27.
    Dobrovolsky I P, Zubkov S I, Miachkin V I. Estimation of the size of earthquake preparation zones. Pure Appl Geophys, 1979, 117: 1025–1044CrossRefGoogle Scholar
  28. 28.
    Dobrovolsky I P, Gershenzon N I, Gokhberg M B. Theory of electrokinetic effects occurring at the final stage in the preparation of a tectonic earthquake. Phys Earth Planet Inter, 1989, 57: 144–156CrossRefGoogle Scholar
  29. 29.
    Gokhberg M B, Morgounov V A, Aronov E L. On the high frequency electromagnetic radiation during seismic activity. Dokladi Acad Sci USSR, 1979, 248: 1077–1081Google Scholar
  30. 30.
    Larkina V I, Migulin V V, Molchanov O A, et al. Some statistical results on very low frequency radiowave emissions in the upper ionosphere over earthquake zones. Phys Earth Planet Inter, 1989, 57: 100–109CrossRefGoogle Scholar
  31. 31.
    Parrot M, Mogilevsky M M. VLF emissions associated with earthquakes and observed in the ionosphere and the magnetosphere. Phys Earth Planet Inter, 1989, 57: 86–99CrossRefGoogle Scholar
  32. 32.
    Bilichenko S V, Iljin F S, Kim E F, et al. ULF response of the ionosphere for earthquake preparation processes. Dokl Acad Nauk USSR, 1990, 311: 1077–1080Google Scholar
  33. 33.
    Serebryakova O N, Bilichenko S V, Chmyrev V M, et al. Electromagnetic ELF radiation from earthquake regions as observed by lowaltitude satellites. Geophys Res Lett, 1992, 19: 91–94CrossRefGoogle Scholar
  34. 34.
    Parrot M, Achache J, Berthelier J J, et al. High-frequency seismoelectromagnetic effects. Phys Earth Planet Inter, 1993, 77: 65–83CrossRefGoogle Scholar
  35. 35.
    Zlotnicki J, Li F, Parrot M. Signals recorded by DEMETER satellite over active volcanoes during the period 2004 August-2007 December. Geophys J Int, 2010, 183: 1332–1347CrossRefGoogle Scholar
  36. 36.
    Zlotnicki J, Li F, Parrot M. Ionospheric disturbances recorded by DEMETER Satellite over active volcanoes: From August 2004 to December 2010. Int J Geophys, 2013, 2013: 1–17CrossRefGoogle Scholar
  37. 37.
    Ouzounov D, Freund F. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv Space Res, 2004, 33: 268–273CrossRefGoogle Scholar
  38. 38.
    Ouzounov D, Liu D, Chunli K, et al. Outgoing long wave radiation variability from IR satellite data prior to major earthquakes. Tectonophysics, 2007, 431: 211–220CrossRefGoogle Scholar
  39. 39.
    Tramutoli V, Cuomo V, Filizzola C, et al. Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: The case of Kocaeli (Izmit) earthquake, August 17, 1999. Remote Sens Environ, 2005, 96: 409–426CrossRefGoogle Scholar
  40. 40.
    Galper A M, Dmitrenko V V, Nikitina N V, et al. Interrelation of fluxes of high energy charged particles in radiation belt with seismicity of Earth. Cosmic Res, 1989, 27: 789–792Google Scholar
  41. 41.
    Chmyrev V M, Isaev N V, Serebryakova O N, et al. Small-scale plasma inhomogeneities and correlated ELF emissions in the ionosphere over an earthquake region. J Atmos Sol-Terr Phys, 1997, 59: 967–974CrossRefGoogle Scholar
  42. 42.
    Rodger C J, Dowden R L, Thomson N R. Observations of electromagnetic activity associated with earthquakes by low altitude satellites. In: Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes. Tokyo: Terrapub, 1999, 697–710Google Scholar
  43. 43.
    Yan R, Parrot M, Pinc¸on J L. Statistical study on variations of the ionospheric ion density observed by DEMETER and related to seismic activities. J Geophys Res Space Phys, 2017, 122: 12421–12429CrossRefGoogle Scholar
  44. 44.
    Lee C C, Liu J Y, Pan C J, et al. The heights of sporadic-E layer si multaneously observed by the VHF radar and ionosondes in Chung-Li. Geophys Res Lett, 2000, 27: 641–644CrossRefGoogle Scholar
  45. 45.
    Parrot M, Berthelier J J, Lebreton J P, et al. Examples of unusual iono-spheric observations made by the DEMETER satellite over seismic re-gions. Phys Chem Earth Parts A/B/C, 2006, 31: 486–495CrossRefGoogle Scholar
  46. 46.
    Bortnik J, Bleier T E, Dunson C, et al. Estimating the seismotelluric current required for observable electromagnetic ground signals. Ann Geophys, 2010, 28: 1615–1624CrossRefGoogle Scholar
  47. 47.
    Pulinets S, Ouzounov D. Lithosphere-Atmosphere-Ionosphere Cou-pling (LAIC) model: An unified concept for earthquake precursors val-idation. J Asian Earth Sci, 2011, 41: 371–382CrossRefGoogle Scholar
  48. 48.
    Sgrigna V. Program for scientific missions dedicated to Earth sciences. ESPERIA Phase A Report. Rome: Italian Space Agency (ASI), 2001. 1–194Google Scholar
  49. 49.
    Sgrigna V, Console R, Conti L, et al. The ESPERIA project: A mis-sion to investigate the near-Earth space. In: Earth Observation with CHAMP. Berlin-Heidelberg: Springer, 2005. 407–412CrossRefGoogle Scholar
  50. 50.
    Parrot M. The micro-satellite DEMETER. J GeoDyn, 2002, 33: 535–541CrossRefGoogle Scholar
  51. 51.
    Bencardino R, Altaura F, Bidoli V, et al. Response of the LAZIO-SiRad detector to low energy electrons. In: Proceedings of the 29th Interna-tional Cosmic Ray Conference. Mumbai: Tata Institute of Fundamental Research, 2005. 449–452Google Scholar
  52. 52.
    Sgrigna V, Altamura F, Ascani S, et al. First data from the EGLE ex-periment onboard the ISS. Microgravity Sci Tec, 2007, 19: 70–74CrossRefGoogle Scholar
  53. 53.
    Bakaldin A V, Batishchev A G, Voronov S A, et al. Satellite experiment ARINA for studying seismic effects in the high-energy particle fluxes in the Earth’s magnetosphere. Cosmic Res, 2007, 45: 445–448CrossRefGoogle Scholar
  54. 54.
    Lefeuvre F, Blanc E, Pincc¸on J L, et al. TARANIS-a satellite project dedicated to the physics of TLEs and TGFs. In: Planetary Atmospheric Electricity. New York: Springer, 2008, 301–315Google Scholar
  55. 55.
    Shen X H, Zhang X M, Wang L W, et al. The earthquake re-lated disturbances in ionosphere and project of the first China seismo-electromagnetic satellite. Earthq Sci, 2011, 24: 639–650CrossRefGoogle Scholar
  56. 56.
    Walt M. Introduction to Geomagnetically Trapped Radiation. Cam-bridge: Cambridge University Press, 1994CrossRefGoogle Scholar
  57. 57.
    Lanzerotti L J. Space weather and natural hazards. Space Weather, 2012, 10: S05008CrossRefGoogle Scholar
  58. 58.
    Shprits Y Y, Subbotin D, Drozdov A, et al. Unusual stable trapping of the ultrarelativistic electrons in the Van Allen radiation belts. Nat Phys, 2013, 9: 699–703CrossRefGoogle Scholar
  59. 59.
    Parrot M, Zaslavski Y. Physical mechanisms of man-made influences on the magnetosphere. Surv Geophys, 1996, 17: 67–100CrossRefGoogle Scholar
  60. 60.
    Voronov S A, Galper A M, Koldashov S V, et al. Registration of spo-radic increase of high energy particle flux near brazilian anomaly re-gion. In: Proceedings of the 20th International Cosmic Ray Conference Moscow, Volume 4. 1987. 451–452Google Scholar
  61. 61.
    Voronov S A, Galper A M, Koldashov S V, et al. Increase of high-energy charged particle fluxes in SAA region and the Earth’s seismic activity. Cosmic Res, 1990, 28: 789–791Google Scholar
  62. 62.
    Voronov S A, Galper A M, Koldashov S V, et al. Observation of high-energy charged particle flux increases in SAA region in 10 September 1985. Cosmic Res, 1989, 27: 629–631Google Scholar
  63. 63.
    Aleshina ME, Galper A M, Koldashov S V, et al. Interrelation between locations of charged particle precipitation regions and earthquake epi-centres. Cosmic Res, 1992, 30: 79–81Google Scholar
  64. 64.
    Galper A M, Koldashov S V, Voronov S A. High energy particle flux variations as earthquake predictors. Adv Space Res, 1995, 15: 131–134CrossRefGoogle Scholar
  65. 65.
    Galperin Yu I, Gladyshev V A, Jordjio N V, et al. Precipitation of high-energy captured particles in the magnetosphere above epicenter of an incipient earthquake. Cosmic Res, 1992, 30: 89–106Google Scholar
  66. 66.
    Pustovetov V P, Malyshev A V. Spatial-temporal correlation of the earthquakes and variations of high-energy particle flux in the inner ra-diation belt. Cosmic Res, 1993, 31: 84–87Google Scholar
  67. 67.
    Aleksandrin S Yu, Galper A M, Grishantzeva L A, et al. High-energy charged particle bursts in the near-Earth space as earthquake precur-sors. Ann Geophys, 2003, 21: 597–602CrossRefGoogle Scholar
  68. 68.
    Sgrigna V, Carota L, Conti L, et al. Correlations between earthquakes and anomalous particle bursts from SAMPEX/PET satellite observa-tions. J Atmos Sol-Terr Phys, 2005, 67: 1448–1462CrossRefGoogle Scholar
  69. 69.
    Fidani C, Battiston R, Burger W J, et al. A study of NOAA particle flux sensitivity to solar activity and strategies to search for correlations among satellite data and earthquake phenomena. Int J Remote Sens, 2012, 33: 4796–4814CrossRefGoogle Scholar
  70. 70.
    Battiston R, Vitale V. First evidence for correlations between electron fluxes measured by NOAA-POES satellites and large seismic events. Nucl Phys B-Proc Sup, 2013, 243–244: 249–257CrossRefGoogle Scholar
  71. 71.
    Nĕmec F, Santolík O, Parrot M, et al. Spacecraft observations of elec-tromagnetic perturbations connected with seismic activity. Geophys Res Lett, 2008, 35: L05109Google Scholar
  72. 72.
    Krechetov V V. Cerenkov radiation of protons in the magnetosphere as a source of VLF waves preceding an earthquake. Geomagn Aeron (Engl Transl), 1996, 35: 688–691Google Scholar
  73. 73.
    McIlwain C E. Coordinates for mapping the distribution of magneti-cally trapped particles. J Geophys Res, 1961, 66: 3681–3691CrossRefGoogle Scholar
  74. 74.
    Swift DW. Mechanisms for auroral precipitation—A review. Rev Geo-phys, 1981, 19: 185–211CrossRefGoogle Scholar
  75. 75.
    Walt M, Voss H D, Pickett J. Electron precipitation coincident with ELF/VLF wave bursts. J Geophys Res, 2002, 107: SMP 28–1–SMP 28–6Google Scholar
  76. 76.
    Millan R M, Thorne R M. Review of radiation belt relativistic electron losses. J Atmos Sol-Terr Phys, 2007, 69: 362–377CrossRefGoogle Scholar
  77. 77.
    Rodger C J, Clilverd M A, McCormick R J. Significance of lightning generated whistlers to inner radiation belt electron lifetimes. J Geophys Res, 2003, 108: 1462CrossRefGoogle Scholar
  78. 78.
    Inan U S, Piddyachiy D, Peter W B, et al. DEMETER satellite obser-vations of lightning-induced electron precipitation. Geophys Res Lett, 2007, 34: L07103CrossRefGoogle Scholar
  79. 79.
    Gemelos E S, Inan U S, Walt M, et al. Seasonal dependence of en-ergetic electron precipitation: Evidence for a global role of lightning. Geophys Res Lett, 2009, 36: L21107CrossRefGoogle Scholar
  80. 80.
    Sauvaud J A, Maggiolo R, Jacquey C, et al. Radiation belt electron precipitation due to VLF transmitters: Satellite observations. Geophys Res Lett, 2008, 35: L09101CrossRefGoogle Scholar
  81. 81.
    Graf K L, Inan U S, Piddyachiy D, et al. DEMETER observations of transmitter-induced precipitation of inner radiation belt electrons. J Geophys Res, 2009, 114: A07205CrossRefGoogle Scholar
  82. 82.
    Sauvaud J A, Parrot M, Slominska E. Comment on “Comparative study on earthquake and ground based transmitter induced radiation belt elec-tron precipitation at middle latitude”, by Sideropoulos et al. (2011). Nat Hazards Earth Syst Sci, 2014, 14: 1–9CrossRefGoogle Scholar
  83. 83.
    Shih J H. Matteo Ricci—Italian Jesuit missionary. In: Encyclope-dia Britannica. Https://www.britannica.com/biography/Matteo-Ricci, 2017Google Scholar
  84. 84.
    Picozza P, Galper A M, Castellini G, et al. PAMELA A payload for antimatter matter exploration and light-nuclei astrophysics. Astropart Phys, 2007, 27: 296–315CrossRefGoogle Scholar
  85. 85.
    Aguilar M, Alberti G, Alpat B, et al. First result from the alpha mag-netic spectrometer on the international space station: Precision mea-surement of the positron fraction in primary cosmic rays of 0.5–350 GeV. Phys Rev Lett, 2013, 110: 141102CrossRefGoogle Scholar
  86. 86.
    Xuhui S. The experimental satellite on electromagnetism monitoring. Chin J Space Sci, 2014, 34: 558–562Google Scholar
  87. 87.
    Alfonsi L, Ambroglini F, Ambrosi G, et al. The HEPD particle detector and the EFD electric field detector for the CSES satellite. Radiat Phys Chem, 2017, 137: 187–192CrossRefGoogle Scholar
  88. 88.
    Badoni D, Ammendola R, Bertello I, et al. A high-performance electric field detector for space missions. Planet Space Sci, 2018, 153: 107–119CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Giovanni Ambrosi
    • 1
  • Simona Bartocci
    • 2
    • 3
  • Laurent Basara
    • 4
  • Roberto Battiston
    • 5
    • 4
  • William J. Burger
    • 4
  • Luca Carfora
    • 6
    • 3
  • Guido Castellini
    • 7
  • Piero Cipollone
    • 3
  • Livio Conti
    • 2
    • 3
  • Andrea Contin
    • 8
    • 9
  • Cinzia De Donato
    • 3
  • Cristian De Santis
    • 3
  • Francesco M. Follega
    • 5
    • 4
  • Cristina Guandalini
    • 9
  • Maria Ionica
    • 1
  • Roberto Iuppa
    • 5
    • 4
  • Giuliano Laurenti
    • 9
  • Ignazio Lazzizzera
    • 5
    • 4
  • Mauro Lolli
    • 9
  • Christian Manea
    • 4
  • Laura Marcelli
    • 3
  • Giuseppe Masciantonio
    • 3
  • Matteo Mergé
    • 3
  • Giuseppe Osteria
    • 10
  • Lorenzo Pacini
    • 7
  • Francesco Palma
    • 6
    • 3
  • Federico Palmonari
    • 9
    • 8
  • Beatrice Panico
    • 10
  • Laura Patrizii
    • 9
  • Francesco Perfetto
    • 10
  • Piergiorgio Picozza
    • 6
    • 3
  • Michele Pozzato
    • 9
  • Matteo Puel
    • 4
  • Irina Rashevskaya
    • 4
  • Ester Ricci
    • 5
    • 4
  • Marco Ricci
    • 11
  • Sergio Bruno Ricciarini
    • 7
  • Valentina Scotti
    • 10
  • Alessando Sotgiu
    • 3
  • Roberta Sparvoli
    • 6
    • 3
  • Bruno Spataro
    • 11
  • Vincenzo Vitale
    • 3
    • 12
  1. 1.Istituto Nazionale di Fisica Nucleare (INFN)Sezione di PerugiaPerugiaItaly
  2. 2.Uninettuno UniversityRomeItaly
  3. 3.Istituto Nazionale di Fisica Nucleare (INFN)Sezione di Roma Tor VergataRomeItaly
  4. 4.Istituto Nazionale di Fisica Nucleare (INFN)TIFPAPovo (TN)Italy
  5. 5.Dipartimento di FisicaUniversità di TrentoPovo (TN)Italy
  6. 6.Dipartimento di FisicaUniversità di Roma Tor VergataRomeItaly
  7. 7.IFAC-CNRSesto Fiorentino (FI)Italy
  8. 8.Dipartimento di Fisica e AstronomiaUniversità di BolognaBolognaItaly
  9. 9.Istituto Nazionale di Fisica Nucleare (INFN)Sezione di BolognaBolognaItaly
  10. 10.Istituto Nazionale di Fisica Nucleare (INFN)Sezione di NapoliNaplesItaly
  11. 11.Istituto Nazionale di Fisica Nucleare (INFN), LNFFrascati (RM)Italy
  12. 12.Agenzia Spaziale Italiana (ASI), SSDCRomeItaly

Personalised recommendations