Skip to main content

Size- and temperature-dependent Young’s modulus and size-dependent thermal expansion coefficient of nanowires

Abstract

Nanowires (NWs) exhibit size-dependent mechanical properties due to the high surface/volume ratio, in which temperature also plays an important role. The surface eigenstress model is further developed here to quantitatively predict the size-dependent mechanical properties of NWs and results in analytic formulas. Molecular dynamics (MD) simulations are conducted to study the size-dependent mechanical of [100], [110] and [111] Ni and Si nanowires within the temperature range of 100–400 K and the MD results verify perfectly the newly developed surface eigenstress model.

This is a preview of subscription content, access via your institution.

References

  1. Gurtin M E, Markenscoff X, Thurston R N. Effect of surface stress on the natural frequency of thin crystals. Appl Phys Lett, 1976, 29: 529–530

    Article  Google Scholar 

  2. Cammarata R C. Surface and interface stress effects in thin films. Prog Surf Sci, 1994, 46: 1–38

    Article  Google Scholar 

  3. Ibach H. The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf Sci Rep, 1997, 29: 195–263

    Article  Google Scholar 

  4. Wang S, Shan Z, Huang H. The mechanical properties of nanowires. Adv Sci, 2017, 4: 1600332

    Article  Google Scholar 

  5. Kim W W. A studies of mechanical properties of Si nanowire through molecular dynamics simulation. J Adv Inform Tech Conv, 2015, 5: 29

    Google Scholar 

  6. Volokitin Y, Sinzig J, de Jongh L J, et al. Quantum-size effects in the thermodynamic properties of metallic nanoparticles. Nature, 1996, 384: 621–623

    Article  Google Scholar 

  7. Weber W M, Mikolajick T. Silicon and germanium nanowire electronics: Physics of conventional and unconventional transistors. Rep Prog Phys, 2017, 80: 066502

    Article  Google Scholar 

  8. Baldauf T, Heinzig A, Trommer J, et al. Tuning the tunneling probability by mechanical stress in Schottky barrier based reconfigurable nanowire transistors. Solid-State Electron, 2017, 128: 148–154

    Article  Google Scholar 

  9. Baldauf T, Heinzig A, Trommer J, et al. Stress-dependent performance optimization of reconfigurable silicon nanowire transistors. IEEE Electron Device Lett, 2015, 36: 991–993

    Article  Google Scholar 

  10. Wu B, Heidelberg A, Boland J J. Mechanical properties of ultrahighstrength gold nanowires. Nat Mater, 2005, 4: 525–529

    Article  Google Scholar 

  11. Wen B, Sader J E, Boland J J. Mechanical properties of ZnO nanowires. Phys Rev Lett, 2008, 101: 175502

    Article  Google Scholar 

  12. Chen H, Kou X, Yang Z, et al. Shape-and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir, 2008, 24: 5233–5237

    Article  Google Scholar 

  13. Zhang B, Jung Y, Chung H S, et al. Nanowire transformation by sizedependent cation exchange reactions. Nano Lett, 2010, 10: 149–155

    Article  Google Scholar 

  14. Lee B, Rudd R E. First-principles calculation of mechanical properties of Si 〈001〉 nanowires and comparison to nanomechanical theory. Phys Rev B, 2007, 75: 195328

    Article  Google Scholar 

  15. Tang Z, Aluru N R. Calculation of thermodynamic and mechanical properties of silicon nanostructures using the local phonon density of states. Phys Rev B, 2006, 74: 235441

    Article  Google Scholar 

  16. Makeev M A, Srivastava D, Menon M. Silicon carbide nanowires under external loads: An atomistic simulation study. Phys Rev B, 2006, 74: 165303

    Article  Google Scholar 

  17. Branício P S, Rino J P. Large deformation and amorphization of Ni nanowires under uniaxial strain: A molecular dynamics study. Phys Rev B, 2000, 62: 16950–16955

    Article  Google Scholar 

  18. Villain P, Beauchamp P, Badawi K F, et al. Atomistic calculation of size effects on elastic coefficients in nanometre-sized tungsten layers and wires. Scripta Mater, 2004, 50: 1247–1251

    Article  Google Scholar 

  19. Liang H, Upmanyu M, Huang H. Size-dependent elasticity of nanowires: Nonlinear effects. Phys Rev B, 2005, 71: 1403

    Article  Google Scholar 

  20. Chen C Q, Shi Y, Zhang Y S, et al. Size dependence of Young’s modulus in ZnO nanowires. Phys Rev Lett, 2006, 96: 075505

    Article  Google Scholar 

  21. Diao J, Gall K, L. Dunn M. Atomistic simulation of the structure and elastic properties of gold nanowires. J Mech Phys Solids, 2004, 52: 1935–1962

    Google Scholar 

  22. Gibbs J W. The Scientific Papers of J. Willard Gibbs. Longmans: Green and Company, 1906

    MATH  Google Scholar 

  23. Wang J, Huang Z, Duan H, et al. Surface stress effect in mechanics of nanostructured materials. Acta Mech Solid Sin, 2011, 24: 52–82

    Article  Google Scholar 

  24. Duan H L, Wang J, Karihaloo B L. Theory of elasticity at the nanoscale. Adv Appl Mech, 2009, 42: 1–68

    Article  Google Scholar 

  25. Gurtin M E, Ian Murdoch A. A continuum theory of elastic material surfaces. Arch Rational Mech Anal, 1975, 57: 291–323

    MathSciNet  Article  MATH  Google Scholar 

  26. Gurtin M E, Ian Murdoch A. Surface stress in solids. Int J Solids Struct, 1978, 14: 431–440

    Article  MATH  Google Scholar 

  27. Miller R E, Shenoy V B. Size-dependent elastic properties of nanosized structural elements. Nanotechnology, 2000, 11: 139–147

    Article  Google Scholar 

  28. Park H S, Klein P A, Wagner G J. A surface Cauchy-Born model for nanoscale materials. Int J Numer Meth Engng, 2006, 68: 1072–1095

    MathSciNet  Article  MATH  Google Scholar 

  29. Park H S, Klein P A. Surface stress effects on the resonant properties of metal nanowires: The importance of finite deformation kinematics and the impact of the residual surface stress. J Mech Phys Solids, 2008, 56: 3144–3166

    Article  MATH  Google Scholar 

  30. Dingreville R, Kulkarni A J, Zhou M, et al. A semi-analytical method for quantifying the size-dependent elasticity of nanostructures. Model Simul Mater Sci Eng, 2008, 16: 025002

    Article  Google Scholar 

  31. Dingreville R, Qu J. Interfacial excess energy, excess stress and excess strain in elastic solids: Planar interfaces. J Mech Phys Solids, 2008, 56: 1944–1954

    MathSciNet  Article  MATH  Google Scholar 

  32. Zhang T Y, Luo M, Chan W K. Size-dependent surface stress, surface stiffness, and Young’s modulus of hexagonal prism [111] β-SiC nanowires. J Appl Phys, 2008, 103: 104308–104308

    Article  Google Scholar 

  33. Zhang T Y, Wang Z J, Chan W K. Eigenstress model for surface stress of solids. Phys Rev B, 2010, 81: 195427

    Article  Google Scholar 

  34. Zhang T Y, Ren H, Wang Z J, et al. Surface eigen-displacement and surface Poisson’s ratios of solids. Acta Mater, 2011, 59: 4437–4447

    Article  Google Scholar 

  35. Zhou X Y, Ren H, Huang B L, et al. Size-dependent elastic properties of thin films: Surface anisotropy and surface bonding. Sci China Tech Sci, 2014, 57: 680–691

    Article  Google Scholar 

  36. Wang Z J, Liu C, Li Z, et al. Size-dependent elastic properties of Au nanowires under bending and tension—Surfaces versus core nonlinearity. J Appl Phys, 2010, 108: 083506–083506

    Article  Google Scholar 

  37. Zhou X Y, Huang B L, Zhang T Y. Size-and temperature-dependent Young’s modulus and size-dependent thermal expansion coefficient of thin films. Phys Chem Chem Phys, 2016, 18: 21508–21517

    Article  Google Scholar 

  38. Steneteg P, Hellman O, Vekilova O Y, et al. Temperature dependence of TiN elastic constants from ab initio molecular dynamics simulations. Phys Rev B, 2013, 87: 94114

    Article  Google Scholar 

  39. Karimi M, Stapay G, Kaplan T, et al. Temperature dependence of the elastic constants of Ni: Reliability of EAM in predicting thermal properties. Model Simul Mater Sci Eng, 1997, 5: 337–346

    Article  Google Scholar 

  40. Wachtman J B, Tefft W E, Lam D G, et al. Exponential temperature dependence of Young’s modulus for several oxides. Phys Rev, 1961, 122: 1754–1759

    Article  Google Scholar 

  41. Varshni Y P. Temperature dependence of the elastic constants. Phys Rev B, 1970, 2: 3952–3958

    Article  Google Scholar 

  42. Araujo L L, Giulian R, Sprouster D J, et al. Size-dependent characterization of embedded Ge nanocrystals: Structural and thermal properties. Phys Rev B, 2008, 78: 094112

    Article  Google Scholar 

  43. Kumar R, Sharma G, Kumar M. Size and temperature effect on thermal expansion coefficient and lattice parameter of nanomaterials. Mod Phys Lett B, 2013, 27: 1350180

    Article  Google Scholar 

  44. Yang C C, Xiao M X, Li W, et al. Size effects on Debye temperature, Einstein temperature, and volume thermal expansion coefficient of nanocrystals. Solid State Commun, 2006, 139: 148–152

    Article  Google Scholar 

  45. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117: 1–19

    Article  MATH  Google Scholar 

  46. Foiles S M, Baskes M I, Daw M S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B, 1986, 33: 7983–7991

    Article  Google Scholar 

  47. Stillinger F H, Weber T A. Computer simulation of local order in condensed phases of silicon. Phys Rev B, 1985, 31: 5262–5271

    Article  Google Scholar 

  48. Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys, 1984, 52: 255–268

    Article  Google Scholar 

  49. Martyna G J, Tobias D J, Klein M L. Constant pressure molecular dynamics algorithms. J Chem Phys, 1994, 101: 4177–4189

    Article  Google Scholar 

  50. Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys, 1981, 52: 7182–7190

    Article  Google Scholar 

  51. Shinoda W, Shiga M, Mikami M. Rapid estimation of elastic constants by molecular dynamics simulation under constant stress. Phys Rev B, 2004, 69: 134103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Sun or Tong-Yi Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Chen, L., Sun, S. et al. Size- and temperature-dependent Young’s modulus and size-dependent thermal expansion coefficient of nanowires. Sci. China Technol. Sci. 61, 687–698 (2018). https://doi.org/10.1007/s11431-018-9227-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9227-8

Keywords

  • surface eigenstress model
  • Size- and temperature-dependent Young’s modulus
  • Size-dependent thermal expansion coefficient
  • Nanowires
  • Molecular dynamics simulations