Skip to main content
Log in

Size- and temperature-dependent Young’s modulus and size-dependent thermal expansion coefficient of nanowires

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Nanowires (NWs) exhibit size-dependent mechanical properties due to the high surface/volume ratio, in which temperature also plays an important role. The surface eigenstress model is further developed here to quantitatively predict the size-dependent mechanical properties of NWs and results in analytic formulas. Molecular dynamics (MD) simulations are conducted to study the size-dependent mechanical of [100], [110] and [111] Ni and Si nanowires within the temperature range of 100–400 K and the MD results verify perfectly the newly developed surface eigenstress model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gurtin M E, Markenscoff X, Thurston R N. Effect of surface stress on the natural frequency of thin crystals. Appl Phys Lett, 1976, 29: 529–530

    Article  Google Scholar 

  2. Cammarata R C. Surface and interface stress effects in thin films. Prog Surf Sci, 1994, 46: 1–38

    Article  Google Scholar 

  3. Ibach H. The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf Sci Rep, 1997, 29: 195–263

    Article  Google Scholar 

  4. Wang S, Shan Z, Huang H. The mechanical properties of nanowires. Adv Sci, 2017, 4: 1600332

    Article  Google Scholar 

  5. Kim W W. A studies of mechanical properties of Si nanowire through molecular dynamics simulation. J Adv Inform Tech Conv, 2015, 5: 29

    Google Scholar 

  6. Volokitin Y, Sinzig J, de Jongh L J, et al. Quantum-size effects in the thermodynamic properties of metallic nanoparticles. Nature, 1996, 384: 621–623

    Article  Google Scholar 

  7. Weber W M, Mikolajick T. Silicon and germanium nanowire electronics: Physics of conventional and unconventional transistors. Rep Prog Phys, 2017, 80: 066502

    Article  Google Scholar 

  8. Baldauf T, Heinzig A, Trommer J, et al. Tuning the tunneling probability by mechanical stress in Schottky barrier based reconfigurable nanowire transistors. Solid-State Electron, 2017, 128: 148–154

    Article  Google Scholar 

  9. Baldauf T, Heinzig A, Trommer J, et al. Stress-dependent performance optimization of reconfigurable silicon nanowire transistors. IEEE Electron Device Lett, 2015, 36: 991–993

    Article  Google Scholar 

  10. Wu B, Heidelberg A, Boland J J. Mechanical properties of ultrahighstrength gold nanowires. Nat Mater, 2005, 4: 525–529

    Article  Google Scholar 

  11. Wen B, Sader J E, Boland J J. Mechanical properties of ZnO nanowires. Phys Rev Lett, 2008, 101: 175502

    Article  Google Scholar 

  12. Chen H, Kou X, Yang Z, et al. Shape-and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir, 2008, 24: 5233–5237

    Article  Google Scholar 

  13. Zhang B, Jung Y, Chung H S, et al. Nanowire transformation by sizedependent cation exchange reactions. Nano Lett, 2010, 10: 149–155

    Article  Google Scholar 

  14. Lee B, Rudd R E. First-principles calculation of mechanical properties of Si 〈001〉 nanowires and comparison to nanomechanical theory. Phys Rev B, 2007, 75: 195328

    Article  Google Scholar 

  15. Tang Z, Aluru N R. Calculation of thermodynamic and mechanical properties of silicon nanostructures using the local phonon density of states. Phys Rev B, 2006, 74: 235441

    Article  Google Scholar 

  16. Makeev M A, Srivastava D, Menon M. Silicon carbide nanowires under external loads: An atomistic simulation study. Phys Rev B, 2006, 74: 165303

    Article  Google Scholar 

  17. Branício P S, Rino J P. Large deformation and amorphization of Ni nanowires under uniaxial strain: A molecular dynamics study. Phys Rev B, 2000, 62: 16950–16955

    Article  Google Scholar 

  18. Villain P, Beauchamp P, Badawi K F, et al. Atomistic calculation of size effects on elastic coefficients in nanometre-sized tungsten layers and wires. Scripta Mater, 2004, 50: 1247–1251

    Article  Google Scholar 

  19. Liang H, Upmanyu M, Huang H. Size-dependent elasticity of nanowires: Nonlinear effects. Phys Rev B, 2005, 71: 1403

    Article  Google Scholar 

  20. Chen C Q, Shi Y, Zhang Y S, et al. Size dependence of Young’s modulus in ZnO nanowires. Phys Rev Lett, 2006, 96: 075505

    Article  Google Scholar 

  21. Diao J, Gall K, L. Dunn M. Atomistic simulation of the structure and elastic properties of gold nanowires. J Mech Phys Solids, 2004, 52: 1935–1962

    Google Scholar 

  22. Gibbs J W. The Scientific Papers of J. Willard Gibbs. Longmans: Green and Company, 1906

    MATH  Google Scholar 

  23. Wang J, Huang Z, Duan H, et al. Surface stress effect in mechanics of nanostructured materials. Acta Mech Solid Sin, 2011, 24: 52–82

    Article  Google Scholar 

  24. Duan H L, Wang J, Karihaloo B L. Theory of elasticity at the nanoscale. Adv Appl Mech, 2009, 42: 1–68

    Article  Google Scholar 

  25. Gurtin M E, Ian Murdoch A. A continuum theory of elastic material surfaces. Arch Rational Mech Anal, 1975, 57: 291–323

    Article  MathSciNet  MATH  Google Scholar 

  26. Gurtin M E, Ian Murdoch A. Surface stress in solids. Int J Solids Struct, 1978, 14: 431–440

    Article  MATH  Google Scholar 

  27. Miller R E, Shenoy V B. Size-dependent elastic properties of nanosized structural elements. Nanotechnology, 2000, 11: 139–147

    Article  Google Scholar 

  28. Park H S, Klein P A, Wagner G J. A surface Cauchy-Born model for nanoscale materials. Int J Numer Meth Engng, 2006, 68: 1072–1095

    Article  MathSciNet  MATH  Google Scholar 

  29. Park H S, Klein P A. Surface stress effects on the resonant properties of metal nanowires: The importance of finite deformation kinematics and the impact of the residual surface stress. J Mech Phys Solids, 2008, 56: 3144–3166

    Article  MATH  Google Scholar 

  30. Dingreville R, Kulkarni A J, Zhou M, et al. A semi-analytical method for quantifying the size-dependent elasticity of nanostructures. Model Simul Mater Sci Eng, 2008, 16: 025002

    Article  Google Scholar 

  31. Dingreville R, Qu J. Interfacial excess energy, excess stress and excess strain in elastic solids: Planar interfaces. J Mech Phys Solids, 2008, 56: 1944–1954

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang T Y, Luo M, Chan W K. Size-dependent surface stress, surface stiffness, and Young’s modulus of hexagonal prism [111] β-SiC nanowires. J Appl Phys, 2008, 103: 104308–104308

    Article  Google Scholar 

  33. Zhang T Y, Wang Z J, Chan W K. Eigenstress model for surface stress of solids. Phys Rev B, 2010, 81: 195427

    Article  Google Scholar 

  34. Zhang T Y, Ren H, Wang Z J, et al. Surface eigen-displacement and surface Poisson’s ratios of solids. Acta Mater, 2011, 59: 4437–4447

    Article  Google Scholar 

  35. Zhou X Y, Ren H, Huang B L, et al. Size-dependent elastic properties of thin films: Surface anisotropy and surface bonding. Sci China Tech Sci, 2014, 57: 680–691

    Article  Google Scholar 

  36. Wang Z J, Liu C, Li Z, et al. Size-dependent elastic properties of Au nanowires under bending and tension—Surfaces versus core nonlinearity. J Appl Phys, 2010, 108: 083506–083506

    Article  Google Scholar 

  37. Zhou X Y, Huang B L, Zhang T Y. Size-and temperature-dependent Young’s modulus and size-dependent thermal expansion coefficient of thin films. Phys Chem Chem Phys, 2016, 18: 21508–21517

    Article  Google Scholar 

  38. Steneteg P, Hellman O, Vekilova O Y, et al. Temperature dependence of TiN elastic constants from ab initio molecular dynamics simulations. Phys Rev B, 2013, 87: 94114

    Article  Google Scholar 

  39. Karimi M, Stapay G, Kaplan T, et al. Temperature dependence of the elastic constants of Ni: Reliability of EAM in predicting thermal properties. Model Simul Mater Sci Eng, 1997, 5: 337–346

    Article  Google Scholar 

  40. Wachtman J B, Tefft W E, Lam D G, et al. Exponential temperature dependence of Young’s modulus for several oxides. Phys Rev, 1961, 122: 1754–1759

    Article  Google Scholar 

  41. Varshni Y P. Temperature dependence of the elastic constants. Phys Rev B, 1970, 2: 3952–3958

    Article  Google Scholar 

  42. Araujo L L, Giulian R, Sprouster D J, et al. Size-dependent characterization of embedded Ge nanocrystals: Structural and thermal properties. Phys Rev B, 2008, 78: 094112

    Article  Google Scholar 

  43. Kumar R, Sharma G, Kumar M. Size and temperature effect on thermal expansion coefficient and lattice parameter of nanomaterials. Mod Phys Lett B, 2013, 27: 1350180

    Article  Google Scholar 

  44. Yang C C, Xiao M X, Li W, et al. Size effects on Debye temperature, Einstein temperature, and volume thermal expansion coefficient of nanocrystals. Solid State Commun, 2006, 139: 148–152

    Article  Google Scholar 

  45. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117: 1–19

    Article  MATH  Google Scholar 

  46. Foiles S M, Baskes M I, Daw M S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B, 1986, 33: 7983–7991

    Article  Google Scholar 

  47. Stillinger F H, Weber T A. Computer simulation of local order in condensed phases of silicon. Phys Rev B, 1985, 31: 5262–5271

    Article  Google Scholar 

  48. Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys, 1984, 52: 255–268

    Article  Google Scholar 

  49. Martyna G J, Tobias D J, Klein M L. Constant pressure molecular dynamics algorithms. J Chem Phys, 1994, 101: 4177–4189

    Article  Google Scholar 

  50. Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys, 1981, 52: 7182–7190

    Article  Google Scholar 

  51. Shinoda W, Shiga M, Mikami M. Rapid estimation of elastic constants by molecular dynamics simulation under constant stress. Phys Rev B, 2004, 69: 134103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Sun or Tong-Yi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Chen, L., Sun, S. et al. Size- and temperature-dependent Young’s modulus and size-dependent thermal expansion coefficient of nanowires. Sci. China Technol. Sci. 61, 687–698 (2018). https://doi.org/10.1007/s11431-018-9227-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9227-8

Keywords

Navigation