Skip to main content
Log in

The design and fault ride through control of un-interrupted DC-DC Autotransformer

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This paper proposed a novel type of DC-DC converter, termed as un-interrupted DC Autotransformer (un-interrupted DC AUTO), which has the capability to ride through DC fault on either side of the converter without blocking any devices. Besides that, the adequately designed converter retains the advantages of DC AUTO technology, namely reduced investment cost and transmission loss. To begin with, the topology and basic attributes of the un-interrupted DC AUTO are illustrated. Then the design goals and the corresponding design procedures are analyzed. Furthermore, an effective control system is proposed to enable the converter steady operation during both normal and faulted conditions. Finally, a 1000 MW ±320 kV/±640 kV test system is built on PSCAD/EMTDC platform to verify the technical feasibility of the proposed converter and the effectiveness of the control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liserre M, Sauter T, Hung J. Future energy systems: Integrating renewable energy sources into the smart power grid through industrial electronics. IEEE Ind Electron Mag, 2010, 4: 18–37

    Article  Google Scholar 

  2. Chen W X, Gao F, Meng X D, et al. Power recovery method for testing the efficiency of the ECD of an integrated generation unit for offshore wind power and ocean wave energy. Sci China Technol Sci, 2017, 60: 333–344

    Article  Google Scholar 

  3. Mei S W, Chen L J. Recent advances on smart grid technology and renewable energy integration. Sci China Technol Sci, 2013, 56: 3040–3048

    Article  Google Scholar 

  4. Liu Y L, Yu Y X. Transient stability probability of a power system incorporating a wind farm. Sci China Technol Sci, 2016, 59: 973–979

    Article  Google Scholar 

  5. Yang L, Xiao X N, Pang C Z. Oscillation analysis of a DFIG-based wind farm interfaced with LCC-HVDC. Sci China Technol Sci, 2014, 57: 2453–2465

    Article  Google Scholar 

  6. Guo C Y, Liu W J, Zhao C Y. Research on the control method for voltage-current source hybrid-HVDC system. Sci China Technol Sci, 2013, 56: 2771–2777

    Article  Google Scholar 

  7. Zhen Y Z, Cui X, Lu T B. Modeling of an ionized electric field on the building near the UHVDC transmission line. Sci China Technol Sci, 2014, 57: 747–753

    Article  Google Scholar 

  8. Xu F, Xu Z. A modular multilevel power flow controller for meshed HVDC grids. Sci China Technol Sci, 2014, 57: 1773–1784

    Article  Google Scholar 

  9. Bucher M K, Wiget R, Andersson G, et al. Multiterminal HVDC networks—What is the preferred topology? IEEE Trans Power Deliver, 2014, 29: 406–413

    Article  Google Scholar 

  10. Wang Y, Marquardt R. Future HVDC-grids employing modular multilevel converters and hybrid DC-breakers. In: Proceedings of the 2013 15th European Conference on Power Electronics and Applications (EPE). IEEE, 2013. 1–8

    Google Scholar 

  11. Xiao H Q, Xu Z, Xue Y L, et al. Theoretical analysis of the harmonic characteristics of modular multilevel converters. Sci China Technol Sci, 2013, 56: 2762–2770

    Article  Google Scholar 

  12. Gowaid I A, Adam G P, Massoud A M, et al. Hybrid and modular multilevel converter designs for isolated HVDC-DC converters. IEEE J Emergi Selected Topics Power Electroni, 2018, 6: 188–202

    Article  Google Scholar 

  13. Finney S J, Adam G P, Williams B W, et al. Review of dc-dc converters for multi-terminal HVDC transmission networks. IET Power Electron, 2016, 9: 281–296

    Article  Google Scholar 

  14. Xiang W, Lin W, Miao L, et al. Power balancing control of a multiterminal DC constructed by multiport front-to-front DC-DC converters. IET Generation Transmission Distribution, 2017, 11: 363–371

    Article  Google Scholar 

  15. Jovcic D, Zhang L. LCL dc/dc converter for dc grids. IEEE Trans Power Deliver, 2013, 28: 2071–2079

    Article  Google Scholar 

  16. Zhao B, Song Q, Liu W, et al. Overview of dual-active-bridge isolated bidirectional DC-DC converter for high-frequency-link power-conversion system. IEEE Trans Power Electron, 2014, 29: 4091–4106

    Article  Google Scholar 

  17. Lin W, Wen J, Cheng S. Multiport DC-DC autotransformer for interconnecting multiple high-voltage DC systems at low cost. IEEE Trans Power Electron, 2015, 30: 6648–6660

    Article  Google Scholar 

  18. Lin W. DC-DC autotransformer with bidirectional DC fault isolating capability. IEEE Trans Power Electron, 2016, 31: 5400–5410

    Article  Google Scholar 

  19. Lin W, Yao W, Wen J, et al. Extended topologies and technologies of DC-DC autotransformer. In: Proceedings of the 12th IET International Conference on AC and DC Power Transmission (ACDC 2016). Beijing, 2016

    Book  Google Scholar 

  20. Zhao C Y, Xu J Z, Li T. DC faults ride-through capability analysis of Full-Bridge MMC-MTDC System. Sci China Technol Sci, 2013, 56: 253–261

    Article  Google Scholar 

  21. Li R, Xu L, Holliday D, et al. Continuous operation of radial multiterminal HVDC systems under DC fault. IEEE Trans Power Deliver, 2016, 31: 351–361

    Article  Google Scholar 

  22. Tahata K, El Oukaili S, Kamei K, et al. HVDC circuit breakers for HVDC grid applications. In: Proceedings of the 11th IET International Conference on AC and DC Power Transmission. Birmingham, 2015. 1–9

    Google Scholar 

  23. Li X, Song Q, Liu W, et al. Protection of nonpermanent faults on DC overhead lines in MMC-Based HVDC systems. IEEE Trans Power Deliver, 2013, 28: 483–490

    Article  Google Scholar 

  24. Schön A, Bakran M M. Comparison of modular multilevel converter based HV DC-DC-converters. In: Proceedings of the 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe). Karlsruhe, 2016. 1–10

    Google Scholar 

  25. Zhang Y, Shi S L, Xu D G, et al. Comparison and review of DC transformer topologies for HVDC and DC grids. In: Proceedings of the 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia). Hefei, 2016. 3336–3343

    Google Scholar 

  26. Zeng R, Xu L, Yao L, et al. Design and operation of a hybrid modular multilevel converter. IEEE Trans Power Electron, 2015, 30: 1137–1146

    Article  Google Scholar 

  27. Lin W, Jovcic D, Nguefeu S, et al. Full-bridge MMC converter optimal design to HVDC operational requirements. IEEE Trans Power Deliver, 2016, 31: 1342–1350

    Article  Google Scholar 

  28. Lu X, Xiang W, Lin W, et al. State-space model and PQ operating zone analysis of hybrid MMC. Electric Power Syst Res, 2018, 162: 99–108

    Article  Google Scholar 

  29. Xiao H, Xu Z, Zhang Z. Selection methods of main circuit parameters for modular multilevel converters. IET Renew Power Generation, 2016, 10: 788–797

    Article  Google Scholar 

  30. Jovcic D, Lin W, Nguefeu S, et al. Low-energy protection system for DC grids based on full-bridge MMC converters. IEEE Trans Power Deliver, 2018, 33: 1934–1943

    Article  Google Scholar 

  31. Hassanpoor A, Norrga S, Nami A. Loss evaluation for modular multilevel converters with different switching strategies. Seoul: ICPEECCE Asia, 2015. 1558–1563

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Xiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Xiang, W., Zuo, W. et al. The design and fault ride through control of un-interrupted DC-DC Autotransformer. Sci. China Technol. Sci. 61, 1935–1949 (2018). https://doi.org/10.1007/s11431-017-9312-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9312-9

Keywords

Navigation