An empirical L-band scintillation model for a mid-latitude station, Weihai, China during the low solar activity period

  • Shishir PriyadarshiEmail author
  • Qing-He ZhangEmail author
  • Yong Wang


Mid-latitude ionospheric scintillation has been studied in very poor proportion as compared to the equatorial and high latitude ionospheric scintillation. Mid-latitude ionospheric scintillations are often associated with either day time photo-ionization or due to the storm enhanced density. Using the phase screen model and the wave propagation theory in random media, we have identified the orientation of the ionospheric irregularities over Weihai with the local geomagnetic field. Amplitude and phase scintillation data observed using global positioning system (GPS) scintillation receiver deployed at the mid-latitude observation station Weihai, have been used along with K-index derived from the horizontal magnetic field component of the local magnetometer. The proposed model uses the scintillation indices relationship with the local K-index. We identified the scintillation dependence over local K-index during geomagnetic quiet and disturbed condition. This dependence coefficient is used on the real scintillation data for modeling. The presented scintillation model has been validated by comparing it to the real observations. The co-relation coefficient is more than 90% during the disturbed as well as quiet geomagnetic conditions.


mid-latitude ionosphere scintillation GPS global navigation satellite systems (GNSS) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kintner P M, Ledvina B M, de Paula E R. GPS and ionospheric scintillations. Space Weather, 2007, 5: 09003CrossRefGoogle Scholar
  2. 2.
    Kersley L, Aarons J, Klobuchar J A, Nighttime enhancements in total electron content near Arecibo and their association with VHF scintillations, J Geophys Res, 1980, 85: 4214–4222CrossRefGoogle Scholar
  3. 3.
    Hajkowicz L A, Minakoshi H, Mid-latitude ionospheric scintillation anomaly in the Far East, Ann Geophys, 2003, 21: 577–581CrossRefGoogle Scholar
  4. 4.
    Ogawa T, Kumagai H, Deep depletions of total electron content associated with severe mid-latitude gigahertz scintillations during geomagnetic storms, J Geophys Res, 1985, 90: 6652–6656CrossRefGoogle Scholar
  5. 5.
    Bust G S, Gaussiran Ii T L, Coco D S, Ionospheric observations of the November 1993 storm, J Geophys Res, 1997, 102: 14293–14304CrossRefGoogle Scholar
  6. 6.
    Ma G, Maruyama T, A super bubble detected by dense GPS network at east Asian longitudes, Geophys Res Lett, 2006, 33: L21103CrossRefGoogle Scholar
  7. 7.
    Ledvina B M, Makela J J, Kintner P M, First observations of intense GPS L1 amplitude scintillations at midlatitude, Geophys Res Lett, 2002, 29: 4–1–4–4CrossRefGoogle Scholar
  8. 8.
    Basu S, Basu S, Valladares C E, et al, Ionospheric effects of major magnetic storms during the international space weather period of September and October 1999: GPS observations, VHF/UHF scintillations, and in situ density structures at middle and equatorial latitudes, J Geophys Res, 2001, 106: 30389–30413CrossRefGoogle Scholar
  9. 9.
    Sojka J J, Rice D, Eccles J V, et al, Understanding midlatitude space weather: Storm impacts observed at Bear Lake Observatory on 31 March 2001, Space Weather, 2004, 2: 10006CrossRefGoogle Scholar
  10. 10.
    Béniguel Y, Global ionospheric propagation model (GIM): A propagation model for scintillations of transmitted signals, Radio Sci, 2002, 37: 4-1–4-13CrossRefGoogle Scholar
  11. 11.
    Beniguel Y, Forte B, Radicella S M, et al, Scintillations effects on satellite to Earth links for telecommunication and navigation purposes, Ann Geophys, 2004, 47: 1179–1199Google Scholar
  12. 12.
    Gherm V E, Zernov N N, Strangeways H J, Propagation model for transionospheric fluctuating paths of propagation: Simulator of the transionospheric channel, Radio Sci, 2005, 40: RS1003Google Scholar
  13. 13.
    Knepp D L, Multiple phase-screen calculation of the temporal behavior of stochastic waves, Proc IEEE, 1983, 71: 722–737CrossRefGoogle Scholar
  14. 14.
    Secan J A, Bussey R M, Fremouw E J, et al, An improved model of equatorial scintillation, Radio Sci, 1995, 30: 607–617CrossRefGoogle Scholar
  15. 15.
    Priyadarshi S, A review of ionospheric scintillation models, Surv Geophys, 2015, 36: 295–324CrossRefGoogle Scholar
  16. 16.
    Priyadarshi S, Ionospheric scintillation modeling for high- and midlatitude using B-spline technique, Astrophys Space Sci, 2015, 359: 12CrossRefGoogle Scholar
  17. 17.
    Booker H G, Ratcliffe J A, Shinn D H, Diffraction from an irregular screen with applications to ionospheric problems, Philos Trans R Soc A-Math Phys Eng Sci, 1950, 242: 579–607MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rino C L, A power law phase screen model for ionospheric scintillation: 1, Weak scatter. Radio Sci, 1979, 14: 1135–1145CrossRefGoogle Scholar
  19. 19.
    Wernik A W, Alfonsi L, Materassi M, Ionospheric irregularities, scintillation and its effect on systems, Acta Geophys Pol, 2004, 52: 237–249Google Scholar
  20. 20.
    Priyadarshi S, Wernik A W, Variation of the ionospheric scintillation index with elevation angle of the transmitter, Acta Geophys, 2013, 61: 1279–1288CrossRefGoogle Scholar
  21. 21.
    Scherliess L, Fejer B G, Holt J, et al, Radar studies of midlatitude ionospheric plasma drifts, J Geophys Res, 2001, 106: 1771–1783CrossRefGoogle Scholar
  22. 22.
    Shore R M, Whaler K A, Macmillan S, et al, Ionospheric midlatitude electric current density inferred from multiple magnetic satellites, J Geophys Res Space Phys, 2013, 118: 5813–5829CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shandong Provincial Key laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space SciencesShandong UniversityWeihaiChina

Personalised recommendations