Skip to main content
Log in

Experimental study on the vortex structure and path instability of freely falling annular disks

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Bodies freely falling in steady water or air are common scenes encountered in various scientific and engineering fields, including the flapping flight of birds and the reentry of a space shuttle. In this work, the freely falling annular thin disks with small dimensionless moments of inertia I* and Reynolds number Re are investigated experimentally in a water tank. We use stereoscopic vision to record the position and orientation of the disks. The flow structure behind the disks is studied by applying fluorescent dye visualization and PIV method. Varying the geometry dimensionless parameter (the inner to outer diameter ratio η and I*) of the disks reveals two new falling patterns. When ηcrit1=0.6<η<ηcrit2=0.8, the disks show a random lateral vibration while falling. For high ηcrit2>0.8, the circular vortex loops shed frequently from the disk, which causes a lengthways vibration superimposed onto straight vertical motion. We also observe another two falling patterns reported previously: hula-hoop and helical motion. By comparing the wake structure of the two motions, we find that the vortex layer twists more violently in the hula-hoop motion, which is the reason for the different trajectory between them. Further research on flow field reveals that the torque on the disk that causes the vibration is due to the formation, elongation and shedding of the vortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Norberg R Å. Autorotation, self-stability, and structure of singlewinged fruits and seeds (samaras) with comparative remarks on animal flight. Biol Rev, 1973, 48: 561–596

    Article  Google Scholar 

  2. Thielicke W. The flapping flight of birds. Doctoral Dissertation. Groningen: University of Groningen, 2014

    Google Scholar 

  3. Lee D A, Viets H. Motion of freely falling spheres at moderate Reynolds numbers. AIAA J, 1971, 9: 2038–2042

    Article  Google Scholar 

  4. Maxwell J C. On a particular case of the descent of a heavy body in a resisting medium. Camb Dublin Math J, 1854, 9: 145–148

    Google Scholar 

  5. Williamson C H K, Govardhan R. Vortex-induced vibrations. Annu Rev Fluid Mech, 2004, 36: 413–455

    Article  MathSciNet  MATH  Google Scholar 

  6. Kry P R, List R. Angular motions of freely falling spheroidal hailstone models. Phys Fluids, 1974, 17: 1093–1102

    Article  Google Scholar 

  7. Wang Z J. Dissecting insect flight. Annu Rev Fluid Mech, 2005, 37: 183–210

    Article  MathSciNet  MATH  Google Scholar 

  8. Ern P, Risso F, Fabre D, et al. Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Annu Rev Fluid Mech, 2012, 44: 97–121

    Article  MathSciNet  MATH  Google Scholar 

  9. Yaginuma T, Ito H. Drag and wakes of freely falling 60° cones at intermediate Reynolds numbers. Phys Fluids, 2008, 20: 117102

    Article  MATH  Google Scholar 

  10. Stringham G E, Simons D B, Guy H P. The behavior of large particles falling in quiescent liquids. US Government Printing Office, 1969

    Google Scholar 

  11. Jayaweera K O L F, Mason B J. The behaviour of freely falling cylinders and cones in a viscous fluid. J Fluid Mech, 1965, 22: 709–720

    Article  MATH  Google Scholar 

  12. Belmonte A, Eisenberg H, Moses E. From flutter to tumble: Inertial drag and Froude similarity in falling paper. Phys Rev Lett, 1998, 81: 345–348

    Article  Google Scholar 

  13. Horowitz M, Williamson C H K. Dynamics of a rising and falling cylinder. J Fluids Struct, 2006, 22: 837–843

    Article  Google Scholar 

  14. Fernandes P C, Risso F, Ern P, et al. Oscillatory motion and wake instability of freely rising axisymmetric bodies. J Fluid Mech, 2007, 573: 479–502

    Article  MATH  Google Scholar 

  15. Field S B, Klaus M, Moore M G, et al. Chaotic dynamics of falling disks. Nature, 1997, 388: 252–254

    Article  Google Scholar 

  16. Willmarth W W, Hawk N E, Harvey R L. Steady and unsteady motions and wakes of freely falling disks. Phys Fluids, 1964, 7: 197–208

    Article  MATH  Google Scholar 

  17. Stewart R E, List R. Gyrational motion of disks during free-fall. Phys Fluids, 1983, 26: 920–927

    Article  Google Scholar 

  18. Zhong H, Chen S, Lee C. Experimental study of freely falling thin disks: Transition from planar zigzag to spiral. Phys Fluids, 2011, 23: 011702

    Article  Google Scholar 

  19. Zhong H, Lee C, Su Z, et al. Experimental investigation of freely falling thin disks. Part 1. The flow structures and Reynolds number effects on the zigzag motion. J Fluid Mech, 2013, 716: 228–250

    MATH  Google Scholar 

  20. Lee C, Su Z, Zhong H, et al. Experimental investigation of freely falling thin disks. Part 2. Transition of three-dimensional motion from zigzag to spiral. J Fluid Mech, 2013, 732: 77–104

    MATH  Google Scholar 

  21. Kanso E, Heisinger L, Newton P. Coins falling in water. J Fluid Mech, 2014, 742: 243–253

    Article  Google Scholar 

  22. Yang J, Liu M, Wu G, et al. Numerical study on coherent structure behind a circular disk. J Fluids Struct, 2014, 51: 172–188

    Article  Google Scholar 

  23. Fabre D, Auguste F, Magnaudet J. Bifurcations and symmetry breaking in the wake of axisymmetric bodies. Phys Fluids, 2008, 20: 051702

    Article  MATH  Google Scholar 

  24. Shenoy A R, Kleinstreuer C. Flow over a thin circular disk at low to moderate Reynolds numbers. J Fluid Mech, 2008, 605: 253–262

    Article  MATH  Google Scholar 

  25. Johansen S T, Wu J, Shyy W. Filter-based unsteady RANS computations. Int J Heat Fluid Flow, 2004, 25: 10–21

    Article  Google Scholar 

  26. Jenny M, Duek J, Bouchet G. Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid. J Fluid Mech, 1999, 508: 201–239

    Article  MathSciNet  MATH  Google Scholar 

  27. Mougin G, Magnaudet J. Path instability of a rising bubble. Phys Rev Lett, 2001, 88: 014502

    Article  Google Scholar 

  28. Mougin G, Magnaudet J. Wake-induced forces and torques on a zigzagging/ spiralling bubble. J Fluid Mech, 2006, 567: 185–194

    Article  MathSciNet  MATH  Google Scholar 

  29. Auguste F, Magnaudet J, Fabre D. Falling styles of disks. J Fluid Mech, 2013, 719: 388–405

    Article  MATH  Google Scholar 

  30. Moffatt H K. Three coins in a fountain. J Fluid Mech, 2013, 720: 1–4

    Article  MathSciNet  MATH  Google Scholar 

  31. Inoue Y, Yamashita S, Kumada M. An experimental study on a wake behind a torus using the UVP monitor. Exp Fluids, 1999, 26: 197–207

    Article  Google Scholar 

  32. Bearman P W, Takamoto M. Vortex shedding behind rings and discs. Fluid Dyn Res, 1988, 3: 214–218

    Article  Google Scholar 

  33. Vincent L, Shambaugh W S, Kanso E. Holes stabilize freely falling coins. J Fluid Mech, 2016, 801: 250–259

    Article  Google Scholar 

  34. Zhang Z. A flexible new technique for camera calibration. IEEE Trans Pattern Anal Machine Intell, 2000, 22: 1330–1334

    Article  Google Scholar 

  35. Ormières D, Provansal M. Transition to turbulence in the wake of a sphere. Phys Rev Lett, 1999, 83: 80–83

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YingJie Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, D., Wei, Y., Wang, C. et al. Experimental study on the vortex structure and path instability of freely falling annular disks. Sci. China Technol. Sci. 61, 853–866 (2018). https://doi.org/10.1007/s11431-017-9218-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9218-4

Keywords

Navigation