A constitutive model for granular soils

  • YangPing Yao
  • Lin Liu
  • Ting Luo


A simple constitutive model is presented to describe the mechanical behaviors of granular soils in a large stress range. A novel normal compression line (NCL) is first expressed by introducing a limit void ratio (eL) in the double logarithmic scale. Subsequently, a state parameter (ξ) is defined to quantify the current state of granular soils, and a unified hardening parameter (H) that is a function of the state parameter (ξ) is developed to govern the hardening process of the drop-shaped yield surface. Combining with flow rule, a constitutive model for granular soils is proposed. Finally, the comparison between the predictions and the test results of Cambria sand and Coarse-grained material indicates that the model is able to describe the mechanical behaviors of granular soils in a large stress range.


granular soils constitutive model particle crushing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sun D A, Sheng D, Sloan S W. Elastoplastic modelling of hydraulic and stress-strain behaviour of unsaturated soils. Mech Mater, 2007, 39: 212–221CrossRefGoogle Scholar
  2. 2.
    Sun D A, Sheng D C, Cui H B, et al. A density-dependent elastoplastic hydro-mechanical model for unsaturated compacted soils. Int J Numer Anal Meth Geomech, 2007, 31: 1257–1279CrossRefzbMATHGoogle Scholar
  3. 3.
    Yao Y P, Qu S, Yin Z Y, et al. SSUH model: A small-strain extension of the unified hardening model. Sci China Tech Sci, 2016, 59: 225–240CrossRefGoogle Scholar
  4. 4.
    Coop M R, Sorensen K K, Bodas Freitas T, et al. Particle breakage during shearing of a carbonate sand. Géotechnique, 2004, 54: 157–163CrossRefGoogle Scholar
  5. 5.
    Ishihara K. Liquefaction and flow failure during earthquakes. Géotechnique, 1993, 43: 351–451CrossRefGoogle Scholar
  6. 6.
    Lee K L, Seed H B. Drained strength characteristics of sands. J the Soil Mech Found Div, 1967, 93: 117–141Google Scholar
  7. 7.
    Verdugo R, Ishihara K. The steady state of sandy soils. Jpn Geotech Soc, 1996, 36: 81–91Google Scholar
  8. 8.
    Guo N, Zhao J. The signature of shear-induced anisotropy in granular media. Comput Geotech, 2013, 47: 1–15MathSciNetCrossRefGoogle Scholar
  9. 9.
    Jefferies M G. Nor-sand: A simle critical state model for sand. Géotechnique, 1993, 43: 91–103CrossRefGoogle Scholar
  10. 10.
    Been K, Jefferies M G. A state parameter for sands. Géotechnique, 1985, 35: 99–112CrossRefGoogle Scholar
  11. 11.
    Yu H S. CASM: A unified state parameter model for clay and sand. Int J Numer Anal Meth Geomech, 1998, 22: 621–653CrossRefzbMATHGoogle Scholar
  12. 12.
    Li X S, Dafalias Y F. Dilatancy for cohesionless soils. Géotechnique, 2000, 50: 449–460CrossRefGoogle Scholar
  13. 13.
    Daouadji A, Hicher P Y, Rahma A. An elastoplastic model for granular materials taking into account grain breakage. Eur J Mech ASolids, 2001, 20: 113–137CrossRefzbMATHGoogle Scholar
  14. 14.
    Yao Y P, Sun D A, Luo T. A critical state model for sands dependent on stress and density. Int J Numer Anal Meth Geomech, 2004, 28: 323–337CrossRefzbMATHGoogle Scholar
  15. 15.
    Yao Y P, Liu L, Luo T. UH model for sands (in Chinese). Chin J Grotech Eng, 2016, 38: 2147–2153Google Scholar
  16. 16.
    Xiao Y, Sun Y F, Liu H L, et al. Model predictions for behaviors of sand-nonplastic-fines mixturesusing equivalent-skeleton void-ratio state index. Sci China Tech Sci, 2017, 60: 878–892CrossRefGoogle Scholar
  17. 17.
    Xiao Y, Sun Y, Yin F, et al. Constitutive modeling for transparent granular soils. Int J Geomech, 2017, 17: 04016150CrossRefGoogle Scholar
  18. 18.
    Xiao Y, Liu H. Elastoplastic constitutive model for rockfill materials considering particle breakage. Int J Geomech, 2017, 17: 04016041CrossRefGoogle Scholar
  19. 19.
    Pestana J M, Whittle A J. Compression model for cohesionless soils. Géotechnique, 1995, 45: 611–631CrossRefGoogle Scholar
  20. 20.
    Yamamuro J A, Lade P V. Drained sand behavior in axisymmetric tests at high pressures. J Geotech Eng, 1996, 122: 109–119CrossRefGoogle Scholar
  21. 21.
    Lade P V, Yamamuro J A. Undrained sand behavior in axisymmetric tests at high pressures. J Geotech Eng, 1996, 122: 120–129CrossRefGoogle Scholar
  22. 22.
    Russell A R, Khalili N. A bounding surface plasticity model for sands exhibiting particle crushing. Can Geotech J, 2004, 41: 1179–1192CrossRefGoogle Scholar
  23. 23.
    Liu E L, Chen S S, Li G Y, et al. Critical state of rockfill materials and a constitutive model considering grain crushing (in Chinese). Rock Soil Mech, 2011, 32: 148–154Google Scholar
  24. 24.
    Hagerty M M, Hite D R, Ullrich C R, et al. One-dimensional highpressure compression of granular media. J Geotech Eng, 1993, 119: 1–18CrossRefGoogle Scholar
  25. 25.
    Cheng Y P. Discrete element simulation of crushable soil. Géotechnique, 2003, 53: 633–642CrossRefGoogle Scholar
  26. 26.
    Yao Y P, Yamamoto H, Wang N D. Constitutive model considering sand crushing. Soils Found, 2008, 48: 603–608CrossRefGoogle Scholar
  27. 27.
    Yao Y P, Sun D A, Matsuoka H. A unified constitutive model for both clay and sand with hardening parameter independent on stress path. Comput Geotech, 2008, 35: 210–222CrossRefGoogle Scholar
  28. 28.
    Yao Y P, Hou W, Zhou A N. UH model: Three-dimensional unified hardening model for overconsolidated clays. Géotechnique, 2009, 59: 451–469CrossRefGoogle Scholar
  29. 29.
    Yao Y, Gao Z, Zhao J, et al. Modified UH model: Constitutive modeling of overconsolidated clays based on a parabolic hvorslev envelope. J Geotech Geoenviron Eng, 2012, 138: 860–868CrossRefGoogle Scholar
  30. 30.
    Luo T, Yao Y P, Chu J. Asymptotic state behaviour and its modeling for saturated sand. Sci China Ser E-Tech Sci, 2009, 52: 2350–2358CrossRefzbMATHGoogle Scholar
  31. 31.
    Yao Y P, Zhou A N. Non-isothermal unified hardening model: A thermo-elasto-plastic model for clays. Géotechnique, 2013, 63: 1328–1345CrossRefGoogle Scholar
  32. 32.
    Luo T, Zhang P P, Yao Y P, et al. UH model considering expansion of soils and its finite element implementation. J Beijing Univ Aeronaut Astronaut, 2016, 42: 13–20Google Scholar
  33. 33.
    Yamamuro J A, Bopp P A, Lade P V. One-dimensional compression of sands at high pressures. J Geotech Eng, 1996, 122: 147–154CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Transportation Science and EngineeringBeihang UniversityBeijingChina

Personalised recommendations