Advertisement

Interpolation-based contour error estimation and component-based contouring control for five-axis CNC machine tools

  • XiangFei Li
  • Huan Zhao
  • Xin Zhao
  • Han Ding
Article
  • 31 Downloads

Abstract

High accuracy contour error estimation and direct contour error control are two major approaches to reduce the contour error. However, two key factors make them complex for five-axis machine tools: the nonlinear kinematics and the coupling between the tool position and orientation. In this study, by finding the reference point nearest to the current actual position, and interpolating the point with two neighboring reference points and using the distance ratio, a new contour error estimation method for five-axis machine tools is proposed, which guarantees high accuracy while depending on only the reference points. By adding a weighted contour error on the tracking error in the workpiece coordinate system, and specifying a desired second-order error dynamics based on the error variable, an effective contouring control method is proposed, which can alleviate the problem: when the contour error components are introduced into the controller, the contour errors increase instead in some regions of the tracking trajectory. A series of experiments are performed on a tilting-rotary-table (TRT) type five-axis machine tool. The results reveal that the proposed estimation method has high accuracy, and compared with the case without contour error control, the proposed control approach can reduce the contour error along the whole trajectory.

Keywords

five-axis contour error contouring control interpolation component-based 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sencer B, Altintas Y, Croft E. Modeling and control of contouring errors for five-axis machine tools—Part I: Modeling. J Manuf Sci Eng, 2009, 131: 031006CrossRefGoogle Scholar
  2. 2.
    Yeh S S, Hsu P L. Perfectly matched feedback control and its integrated design for multiaxis motion systems. J Dyn Syst-T ASME, 2004, 126: 547–557CrossRefGoogle Scholar
  3. 3.
    Erkorkmaz K, Altintas Y. High speed CNC system design. Part III: High speed tracking and contouring control of feed drives. Int J Mach Tool Manu, 2001, 41: 1637–1658CrossRefGoogle Scholar
  4. 4.
    Koren Y. Cross-coupled biaxial computer control for manufacturing systems. J Dyn Syst-T ASME, 1980, 102: 265CrossRefzbMATHGoogle Scholar
  5. 5.
    Yeh S S, Hsu P L. Estimation of the contouring error vector for the cross-coupled control design. IEEE-ASME T Mech, 2002, 7: 44–51CrossRefGoogle Scholar
  6. 6.
    Zhu L M, Zhao H, Ding H. Real-time contouring error estimation for multi-axis motion systems using the second-order approximation. Int J Mach Tool Manu, 2013, 68: 75–80CrossRefGoogle Scholar
  7. 7.
    Yang J Z, Li Z X. A novel contour error estimation for position loopbased cross-coupled control. IEEE-ASME T Mech, 2011, 16: 643–655CrossRefGoogle Scholar
  8. 8.
    Chuang H Y, Liu C H. A model-referenced adaptive control strategy for improving contour accuracy of multiaxis machine tools. IEEE T Ind Appl, 1992, 28: 221–227CrossRefGoogle Scholar
  9. 9.
    El Khalick M A, Uchiyama N. Contouring controller design based on iterative contour error estimation for three-dimensional machining. Robot Cim-Int Manu, 2011, 27: 802–807CrossRefGoogle Scholar
  10. 10.
    Chiu G T C, Tomizuka M. Contouring control of machine tool feed drive systems: A task coordinate frame approach. IEEE Trans Contr Syst Tech, 2001, 9: 130–139CrossRefGoogle Scholar
  11. 11.
    Shi R, Lou Y J. A novel contouring error estimation for three-dimensional contouring control. IEEE Robot Autom Lett, 2017, 2: 128–134CrossRefGoogle Scholar
  12. 12.
    Yao B, Hu C X, Wang Q F. An orthogonal global task coordinate frame for contouring control of biaxial systems. IEEE-ASME T Mech, 2012, 17: 622–634CrossRefGoogle Scholar
  13. 13.
    Wu J H, Xiong Z H, Ding H. Integral design of contour error model and control for biaxial system. Int J Mach Tool Manu, 2015, 89: 159–169CrossRefGoogle Scholar
  14. 14.
    Erkorkmaz K, Altintas Y. High speed contouring control algorithm for CNC machine tools. ASME Dyn Syst Contr Div, 1998, 64: 463–469Google Scholar
  15. 15.
    Huo F, Xi X C, Poo A N. Generalized Taylor series expansion for free-form two-dimensional contour error compensation. Int J Mach Tool Manu, 2012, 53: 91–99CrossRefGoogle Scholar
  16. 16.
    Conway J R, Ernesto C A, Farouki R T, et al. Performance analysis of cross-coupled controllers for CNC machines based upon precise realtime contour error measurement. Int J Mach Tool Manu, 2012, 52: 30–39CrossRefGoogle Scholar
  17. 17.
    Chen S L, Wu K C. Contouring control of smooth paths for multiaxis motion systems based on equivalent errors. IEEE Trans Contr Syst Technol, 2007, 15: 1151–1158CrossRefGoogle Scholar
  18. 18.
    Ghaffari A, Ulsoy A G. Dynamic contour error estimation and feedback modification for high-precision contouring. IEEE-ASME T Mech, 2016, 21: 1732–1741CrossRefGoogle Scholar
  19. 19.
    Lo C C. A tool-path control scheme for five-axis machine tools. Int J Mach Tool Manu, 2002, 42: 79–88CrossRefGoogle Scholar
  20. 20.
    El Khalick M A, Uchiyama N. Estimation of tool orientation contour errors for five-axismachining. Robot Cim-Int Manuf, 2013, 29: 271–277CrossRefGoogle Scholar
  21. 21.
    Zhang K, Yuen A, Altintas Y. Pre-compensation of contour errors in five-axis CNC machine tools. Int J Mach Tool Manu, 2013, 74: 1–11CrossRefGoogle Scholar
  22. 22.
    Yang J X, Altintas Y. A generalized on-line estimation and control of five-axis contouring errors of CNC machine tools. Int J Mach Tool Manu, 2015, 88: 9–23CrossRefGoogle Scholar
  23. 23.
    Li X F, Zhao H, Zhao X, et al. Dual sliding mode contouring control with high accuracy contour error estimation for five-axis CNC machine tools. Int J Mach Tool Manu, 2016, 108: 74–82CrossRefGoogle Scholar
  24. 24.
    Tomizuka M. Zero phase error tracking algorithm for digital control. J Dyn Syst-T ASME, 1987, 109: 65–68CrossRefzbMATHGoogle Scholar
  25. 25.
    Masory O. Improving contouring accuracy of NC/CNC systems with additional velocity feed forward loop. J Eng Ind, 1986, 108: 227–230CrossRefGoogle Scholar
  26. 26.
    Xi X C, Zhao W S, Poo A N. Improving CNC contouring accuracy by robust digital integral sliding mode control. Int J Mach Tool Manu, 2015, 88: 51–61CrossRefGoogle Scholar
  27. 27.
    Chiu G T C, Tomizuka M. Coordinated position control of multi-axis mechanical systems. J Dyn Syst-T ASME, 1998, 120: 389–393CrossRefGoogle Scholar
  28. 28.
    Zhao H, Zhu L M, Ding H. Cross-coupled controller design for triaxial motion systems based on second-order contour error estimation. Sci China Tech Sci, 2015, 58: 1209–1217Google Scholar
  29. 29.
    Chen W, Wang D D, Geng Q, et al. Robust adaptive cross-coupling position control of biaxial motion system. Sci China Tech Sci, 2016, 59: 680–688CrossRefGoogle Scholar
  30. 30.
    Rahaman M, Seethaler R, Yellowley I. A new approach to contour error control in high speed machining. Int J Mach Tool Manu, 2015, 88: 42–50CrossRefGoogle Scholar
  31. 31.
    Sencer B, Altintas Y. Modeling and control of contouring errors for five-axis machine tools—Part II: Precision contour controller design. J Manuf Sci Eng, 2009, 131: 031007CrossRefGoogle Scholar
  32. 32.
    Lin M T, Wu S K. Modeling and improvement of dynamic contour errors for five-axis machine tools under synchronous measuring paths. Int J Mach Tool Manu, 2013, 72: 58–72CrossRefGoogle Scholar
  33. 33.
    Jung Y H, Lee D W, Kim J S, et al. NC post-processor for 5-axis milling machine of table-rotating/tilting type. J Mater Process Tech, 2002, 130–131: 641–646CrossRefGoogle Scholar
  34. 34.
    Fan S J. A new extracting formula and a new distinguishing means on the one variable cubic equation. Nat Sci J Hainan Teach Coll, 1989, 2: 91–98Google Scholar
  35. 35.
    Erkorkmaz K, Altintas Y. High speed CNC system design. Part II: Modeling and identification of feed drives. Int J Mach Tool Manu, 2001, 41: 1487–1509CrossRefGoogle Scholar
  36. 36.
    Fleisig R V, Spence A D. A constant feed and reduced angular acceleration interpolation algorithm for multi-axis machining. Comput-Aided Des, 2001, 33: 1–15CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State key Laboratory of Digital Manufacturing Equipment and TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations