Skip to main content
Log in

Measurements of convection electric field in the inner magnetosphere

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this paper, we study the characteristic of large-scale convection electric field in the inner magnetosphere, using magnetospheric multiscale (MMS) observations between L=5 and L=8 over the period from September 1, 2015 to October 31, 2016, covering almost all magnetic local time (MLT). Observations show that the DC convection electric field generally has small variations in this region. We investigate whether the convection electric field is correlated with geomagnetic indices and solar wind parameters. It is found that, among the studied parameters, solar wind electric field, z component of interplanetary magnetic field, AE and Kp indices show good correlations with the averaged convection electric field. The results in this paper provide valuable information for understanding the role of electric field on the dynamics of the inner magnetosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fu H S, Tu J, Song P, et al. The nightside-to-dayside evolution of the inner magnetosphere: Imager for Magnetopause-to-Aurora Global Exploration Radio Plasma Imager observations. J Geophys Res, 2010, 115: A04213

    Google Scholar 

  2. Thaller S A, Wygant J R, Dai L, et al. Van Allen Probes investigation of the large-scale duskward electric field and its role in ring current formation and plasmasphere erosion in the 1 June 2013 storm. J Geophys Res Space Phys, 2015, 120: 4531–4543

    Article  Google Scholar 

  3. Liu X, Liu W, Cao J B, et al. Dynamic plasmapause model based on THEMIS measurements. J Geophys Res Space Phys, 2015, 120: 543–556

    Google Scholar 

  4. Liu X, Liu W L. A new plasmapause location model based on THEMIS observations. Sci China Earth Sci, 2014, 57: 2552–2557

    Article  Google Scholar 

  5. Liu W, Tu W, Li X, et al. On the calculation of electric diffusion coefficient of radiation belt electrons with in situ electric field measurements by THEMIS. Geophys Res Lett, 2016, 43: 1023–1030

    Article  Google Scholar 

  6. Cao J B, Ding W Z, Reme H, et al. The statistical studies of the inner boundary of plasma sheet. Ann Geophys, 2011, 29: 289–298

    Article  Google Scholar 

  7. Fu H S, Cao J B, Yang B, et al. Electron loss and acceleration during storm time: The contribution of wave-particle interaction, radial diffusion, and transport processes. J Geophys Res, 2011, 116: A10210

    Google Scholar 

  8. Califf S, Li X, Blum L, et al. THEMIS measurements of quasi-static electric fields in the inner magnetosphere. J Geophys Res Space Phys, 2014, 119: 9939–9951

    Article  Google Scholar 

  9. Weimer D R. Models of high-latitude electric potentials derived with a least error fit of spherical harmonic coefficients. J Geophys Res, 1995, 100: 19595–19607

    Article  Google Scholar 

  10. Cao J B, Zhang D, Reme H, et al. Preliminary empirical model of inner boundary of ion plasma sheet. Adv Space Res, 2015, 56: 1194–1199

    Article  Google Scholar 

  11. Wei Y, Pu Z, Hong M, et al. Westward ionospheric electric field perturbations on the dayside associated with substorm processes. J Geophys Res, 2009, 114: A12209

    Google Scholar 

  12. Wei Y, Pu Z, Hong M, et al. Long-lasting goodshielding at the equatorial ionosphere. J Geophys Res, 2010, 115: A12256

    Google Scholar 

  13. Wei Y, Wan W, Pu Z, et al. The transition to overshielding after sharp and gradual interplanetary magnetic field northward turning. J Geophys Res, 2011, 116: A01211

    Article  Google Scholar 

  14. Kistler L M, Ipavich F M, Hamilton D C, et al. Energy spectra of the major ion species in the ring current during geomagnetic storms. J Geophys Res, 1989, 94: 3579–3599

    Article  Google Scholar 

  15. Jordanova V K, Boonsiriseth A, Thorne R M, et al. Ring current asymmetry from global simulations using a high-resolution electric field model. J Geophys Res, 2003, 108: 1443

    Article  Google Scholar 

  16. Ma Y D, Cao J B, Zhou G, et al. Multipoint analysis of the rapid convection event. Chin J Geophys, 2007, 1148: 189–199

    Google Scholar 

  17. Ding W Z, Cao J B, Zeng L, et al. Simulation studies of plasma sheet ion boundary. Chin J Geophys, 2010, 53: 1505–1514

    Google Scholar 

  18. Zhang D, Cao J B, Wei X H, et al. New technique to calculate electron Alfvén layer and its application in interpreting geosynchronous access of PS energetic electrons. J Geophys Res Space Phys, 2015, 120: 1675–1683

    Article  Google Scholar 

  19. Liu W L, Li X, Sarris T, et al. Observation and modeling of the injection observed by THEMIS and LANL satellites during the 23 March 2007 substorm event. J Geophys Res, 2009, 114: A00C18

    Article  Google Scholar 

  20. Wolf R A. Ionosphere-magnetosphere coupling. Space Sci Rev, 1975, 17: 537–562

    Article  Google Scholar 

  21. Yu Y, Jordanova V K, Ridley A J, et al. Effects of electric field methods on modeling the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics. J Geophys Res Space Phys, 2017, 122: 5321–5338

    Article  Google Scholar 

  22. Volland H. A semiempirical model of large-scale magnetospheric electric fields. J Geophys Res, 1973, 78: 171–180

    Article  Google Scholar 

  23. Stern D P. Large-scale electric fields in the Earth’s magnetosphere. Rev Geophys, 1977, 15: 156–194

    Article  Google Scholar 

  24. Rowland D E, Wygant J R. Dependence of the large-scale, inner magnetospheric electric field on geomagnetic activity. J Geophys Res, 1998, 103: 14959–14964

    Article  Google Scholar 

  25. Baumjohann W, Haerendel G. Magnetospheric convection observed between 0600 and 2100 LT: Solar wind and IMF dependence. J Geophys Res, 1985, 90: 6370–6378

    Article  Google Scholar 

  26. Baumjohann W, Haerendel G, Melzner F. Magnetospheric convection observed between 0600 and 2100 LT: Variations with Kp. J Geophys Res, 1985, 90: 393–398

    Article  Google Scholar 

  27. Burch J L, Moore T E, Torbert R B, et al. Magnetospheric multiscale overview and science objectives. Space Sci Rev, 2016, 199: 5–21

    Article  Google Scholar 

  28. Shue J H, Song P, Russell C T, et al. Magnetopause location under extreme solar wind conditions. J Geophys Res, 1998, 103: 17691–17700

    Article  Google Scholar 

  29. Torbert R B, Russell C T, Magnes W, et al. The FIELDS instrument suite on MMS: Scientific objectives, measurements, and data products. Space Sci Rev, 2016, 199: 105–135

    Article  Google Scholar 

  30. Ergun R E, Tucker S, Westfall J, et al. The axial double probe and fields signal processing for the MMS mission. Space Sci Rev, 2016, 199: 167–188

    Article  Google Scholar 

  31. Lindqvist P A, Olsson G, Torbert R B, et al. The spin-plane double probe electric field instrument for MMS. Space Sci Rev, 2016, 199: 137–165

    Article  Google Scholar 

  32. Fu H S, Tu J, Cao J B, et al. IMAGE and DMSP observations of a density trough inside the plasmasphere. J Geophys Res, 2010, 115: A07227

    Google Scholar 

  33. Fu H S, Khotyaintsev Y V, Vaivads A, et al. Electric structure of dipolarization front at sub-proton scale. Geophys Res Lett, 2012, 39: L06105

    Article  Google Scholar 

  34. Lv L Q, Pu Z Y, Xie L. Multiple magnetic topologies in flux transfer events: THEMIS measurements. Sci China Tech Sci, 2016, 59: 1283–1293

    Article  Google Scholar 

  35. Goldstein J, Sandel B R, Hairston M R, et al. Control of plasmaspheric dynamics by both convection and sub-auroral polarization stream. Geophys Res Lett, 2003, 30: 2243

    Google Scholar 

  36. Li C F, Zou H, Zong Q G, et al. An analysis of the correlation between the fluxes of high-energy electrons and low-middle-energy electrons in the magnetosphere. Sci China Tech Sci, 2016, 59: 1130–1136

    Article  Google Scholar 

  37. Yu Y, Jordanova V, Zou S, et al. Modeling subauroral polarization streams during the 17 March 2013 storm. J Geophys Res Space Phys, 2015, 120: 1738–1750

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41574154 and 41431071). We thank the FIELDS instrument team of MMS mission for making data available. We thank Dr. Yuri Khotyaintsev for helpful discussion. The solar parameters and geomagnetic indices are obtained from the OMNI database (https://doi.org/omniweb.gsfc.nasa.gov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenLong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, X., Liu, W. Measurements of convection electric field in the inner magnetosphere. Sci. China Technol. Sci. 61, 1866–1871 (2018). https://doi.org/10.1007/s11431-017-9200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9200-6

Keywords

Navigation