Science China Technological Sciences

, Volume 61, Issue 4, pp 551–557 | Cite as

Arc corrosion behavior of Cu-Ti3AlC2 composites in air atmosphere

  • XiaoChen Huang
  • Yi Feng
  • Gang Qian
  • Hao Zhao
  • ZhaoKun Song
  • JingCheng Zhang
  • XueBin Zhang
Article
  • 21 Downloads

Abstract

The arc corrosion evolution of Cu-20 vol.% Ti3AlC2 cathodes is presented here. After eroded by 3, 4, 5, 6, 7, 8, 9, 10 kV DC voltage, respectively, the surface morphologies were characterized by field emission scanning electron microscope with craters and protrusions. Compared to small craters and dense protrusions of the morphology by high voltage, the eroded surface was covered with bigger craters and sparse protrusions at low voltage. No crack was discovered on the surface even at 10 kV. By means of energy dispersive spectroscopy and Raman spectroscopy, the decomposition of Cu-20 vol.% Ti3AlC2 cathode to CuO, Al2O3 and TiO2 were proved. Meanwhile, W anode is oxidized to WO2. The peak current increases with the increasing breakdown voltage, which is recorded by a digital memory oscilloscope.

Keywords

Cu-Ti3AlC2 arc erosion FE-SEM Raman spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boxman R L, Goldsmith S, Greenwood A. Twenty-five years of progress in vacuum arc research and utilization. IEEE Trans Plasma Sci, 1997, 25: 1174–1186CrossRefGoogle Scholar
  2. 2.
    Zhu W C, Wang B R, Yao Z X, et al. Discharge characteristics of an atmospheric pressure radio-frequency plasma jet. J Phys D-Appl Phys, 2005, 38: 1396–1401CrossRefGoogle Scholar
  3. 3.
    Zhao L, Li Z, Shi K, et al. Electrical properties of nanocrystalline CuCr25 contact material. IEEE Trans Compon Packag Manufact Technol, 2013, 3: 625–632CrossRefGoogle Scholar
  4. 4.
    Kaczmar J W, Pietrzak K, Włosiński W. The production and application of metal matrix composite materials. J Mater Process Tech, 2000, 106: 58–67CrossRefGoogle Scholar
  5. 5.
    Qian G, Feng Y, Chen F Y, et al. Effect of current polarity on electrical sliding wear behavior of Cu-WS2-graphite-WS2 nanotube composites in air and vacuum conditions. Sci China Tech Sci, 2013, 56: 2839–2846CrossRefGoogle Scholar
  6. 6.
    Barsoum M W. The MN+1AXN phases: A new class of solids. Prog Solid State Chem, 2000, 28: 201–281CrossRefGoogle Scholar
  7. 7.
    Sun Z M. Progress in research and development on MAX phases: A family of layered ternary compounds. Int Mater Rev, 2011, 56: 143–166CrossRefGoogle Scholar
  8. 8.
    Radovic M, Barsoum M W. MAX phases: Bridging the gap between metals and ceramics. Am Ceram Soc Bull, 2013, 92: 20–27Google Scholar
  9. 9.
    Eklund P, Beckers M, Jansson U, et al. The Mn+1AXn phases: Materials science and thin-film processing. Thin Solid Films, 2010, 518: 1851–1878CrossRefGoogle Scholar
  10. 10.
    Huang X, Feng Y, Qian G, et al. Influence of breakdown voltages on arc erosion of a Ti3AlC2 cathode in an air atmosphere. Ceramics Int, 2017, 43: 10601–10605CrossRefGoogle Scholar
  11. 11.
    Zhang J, Zhou Y C. Microstructure, mechanical, and electrical properties of Cu-Ti3AlC2 and in situ Cu-TiCx composites. J Mater Res, 2011, 23: 924–932CrossRefGoogle Scholar
  12. 12.
    Wang S, Zhu S, Cheng J, et al. Microstructural, mechanical and tribological properties of Al matrix composites reinforced with Cu coated Ti3AlC2. J Alloys Compd, 2017, 690: 612–620CrossRefGoogle Scholar
  13. 13.
    Anders A. Chopping effect observed at cathodic arc initiation. IEEE Trans Plasma Sci, 2000, 28: 1303–1304CrossRefGoogle Scholar
  14. 14.
    Zhang P, Ngai T L, Xie H, et al. Erosion behaviour of a Ti3SiC2 cathode under low-current vacuum arc. J Phys D-Appl Phys, 2013, 46: 395202CrossRefGoogle Scholar
  15. 15.
    Parker J C, Siegel R W. Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2. Appl Phys Lett, 1990, 57: 943–945CrossRefGoogle Scholar
  16. 16.
    He Z J, Haug R. Cathode spot initiation in different external conditions. J Phys D-Appl Phys, 1997, 30: 603–613CrossRefGoogle Scholar
  17. 17.
    Krupka R M, Taylor D E. Ablation behavior of materials subjected to missile re-entry heat flux rates. Corrosion, 1960, 16: 385t–389tCrossRefGoogle Scholar
  18. 18.
    Giridharan P K, Murugan N. Effect of pulsed gas tungsten arc welding process parameters on pitting corrosion resistance of type 304l stainless steel welds. Corrosion, 2007, 63: 433–441CrossRefGoogle Scholar
  19. 19.
    Mesyats G A, Barengolts S A. The cathode spot of a high-current vacuum arc as a multiecton phenomenon. IEEE Trans Plasma Sci, 2001, 29: 704–707CrossRefGoogle Scholar
  20. 20.
    Guo Z, Qu S, Ran L, et al. Formation of two-dimensional periodic microstructures by a single shot of three interfered femtosecond laser pulses on the surface of silica glass. Opt Lett, 2008, 33: 2383–2385CrossRefGoogle Scholar
  21. 21.
    Zhou Y C, Wang X H, Sun Z M, et al. Electronic and structural properties of the layered ternary carbide Ti3AlC2. J Mater Chem, 2001, 11: 2335–2339CrossRefGoogle Scholar
  22. 22.
    Zhao S, Xue J, Wang Y, et al. Ab initio study of irradiation tolerance for different Mn+1AXn phases: Ti3SiC2 and Ti3AlC2. J Appl Phys, 2014, 115: 023503CrossRefGoogle Scholar
  23. 23.
    Huang X, Feng Y, Dou Y, et al. Effect of electron irradiation on Ti3AlC2. Scripta Mater, 2016, 113: 114–117CrossRefGoogle Scholar
  24. 24.
    Huang X C, Feng Y, Qian G, et al. Effect of electron irradiation on different crystal planes of titanium aluminum carbide. Ceramics Int, 2016, 42: 14984–14991CrossRefGoogle Scholar
  25. 25.
    Xie H, Ngai T L, Zhang P, et al. Erosion of Cu-Ti3SiC2 composite under vacuum arc. Vacuum, 2015, 114: 26–32CrossRefGoogle Scholar
  26. 26.
    Zhang P, Ngai T L, Ding Z, et al. Erosion craters on Ti3SiC2 anode. Phys Lett A, 2014, 378: 2417–2422CrossRefGoogle Scholar
  27. 27.
    Zhu J Q, Eriksson A O, Ghafoor N, et al. Microstructure evolution of Ti3SiC2 compound cathodes during reactive cathodic arc evaporation. J Vacuum Sci Tech A-Vacuum Surfs Films, 2011, 29: 031601CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • XiaoChen Huang
    • 1
  • Yi Feng
    • 1
    • 2
  • Gang Qian
    • 2
  • Hao Zhao
    • 1
  • ZhaoKun Song
    • 1
  • JingCheng Zhang
    • 2
  • XueBin Zhang
    • 1
  1. 1.School of Materials Science and EngineeringHefei University of TechnologyHefeiChina
  2. 2.Instrumental Analysis CenterHefei University of TechnologyHefeiChina

Personalised recommendations