Science China Technological Sciences

, Volume 61, Issue 2, pp 168–178 | Cite as

Fatigue behavior of high-entropy alloys: A review

  • PeiYong Chen
  • Chanho Lee
  • Shao-Yu Wang
  • Mohsen Seifi
  • John J. Lewandowski
  • Karin A. Dahmen
  • HaoLing Jia
  • Xie Xie
  • BiLin Chen
  • Jien-Wei Yeh
  • Che-Wei Tsai
  • Tao Yuan
  • Peter K. Liaw


Fatigue failures cost approximately 4% of the United States’ gross domestic product (GDP). The design of highly fatigue-resistant materials is always in demand. Different from conventional strategies of alloy design, high-entropy alloys (HEAs) are defined as materials with five or more principal elements, which could be solid solutions. This locally-disordered structure is expected to lead to unique fatigue-resistant properties. In this review, the studies of the fatigue behavior of HEAs during the last five years are summarized. The four-point-bending high-cycle fatigue coupled with statistical modelling, and the fatigue-crack-growth behavior of HEAs, are reviewed. The effects of sample defects and nanotwins-deformation mechanisms on four-point-bending high-cycle fatigue of HEAs are discussed in detail. The influence of stress ratio and temperature on fatigue-crack-growth characteristics of HEAs is also discussed. HEAs could exhibit comparable or greater fatigue properties, relative to conventional materials. Finally, the possible future work regarding the fatigue behavior of HEAs is suggested.


high-entropy alloys fatigue behaviour statistical modelling fatigue crack growth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reed R P. The Economic Effects of Fracture in the United States. US Department of Commerce, National Bureau of Standards, 1983Google Scholar
  2. 2.
    Nahm H, Moteff J. Second phase formation and its influence on the fatigue properties of incoloy 800 at elevated temperatures. Metallur Trans A, 1976, 7: 1473–1477CrossRefGoogle Scholar
  3. 3.
    Vardiman R G, Kant R A. The improvement of fatigue life in Ti-6Al-4V by ion implantation. J Appl Phys, 1982, 53: 690–694CrossRefGoogle Scholar
  4. 4.
    Lockyer S A, Noble F W. Fatigue of precipitate strengthened Cu-Ni-Si alloy. Mater Sci Tech, 1999, 15: 1147–1153CrossRefGoogle Scholar
  5. 5.
    Hemphill M A, Yuan T, Wang G Y, et al. Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater, 2012, 60: 5723–5734CrossRefGoogle Scholar
  6. 6.
    Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6: 299–303CrossRefGoogle Scholar
  7. 7.
    Santodonato L J, Zhang Y, Feygenson M, et al. Deviation from highentropy configurations in the atomic distributions of a multi-principalelement alloy. Nat Commun, 2015, 6: 5964CrossRefGoogle Scholar
  8. 8.
    Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1–93CrossRefGoogle Scholar
  9. 9.
    Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng-A, 2004, 375-377: 213–218CrossRefGoogle Scholar
  10. 10.
    Guo S, Liu C T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog Nat Sci-Mater Int, 2011, 21: 433–446CrossRefGoogle Scholar
  11. 11.
    Ng C, Guo S, Luan J, et al. Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrFeNi high entropy alloy. Intermetallics, 2012, 31: 165–172CrossRefGoogle Scholar
  12. 12.
    Gao M C, Yeh J W, Liaw P K, et al. High-Entropy Alloys: Fundamentals and Applications. Cham: Springer International Publishing, 2016CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater, 2008, 10: 534–538CrossRefGoogle Scholar
  14. 14.
    Lu Z P, Wang H, Chen M W, et al. An assessment on the future development of high-entropy alloys: Summary from a recent workshop. Intermetallics, 2015, 66: 67–76CrossRefGoogle Scholar
  15. 15.
    Carroll R, Lee C, Tsai C W, et al. Experiments and model for serration statistics in low-entropy, medium-entropy, and high-entropy alloys. Sci Rep, 2015, 5: 16997CrossRefGoogle Scholar
  16. 16.
    Poletti M G, Branz S, Fiore G, et al. Equilibrium high entropy phases in X-NbTaTiZr (X=Al, V, Cr and Sn) multiprincipal component alloys. J Alloys Compd, 2016, 655: 138–146CrossRefGoogle Scholar
  17. 17.
    Shun T T, Du Y C. Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy. J Alloys Compd, 2009, 479: 157–160CrossRefGoogle Scholar
  18. 18.
    Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345: 1153–1158CrossRefGoogle Scholar
  19. 19.
    Li D, Li C, Feng T, et al. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater, 2017, 123: 285–294CrossRefGoogle Scholar
  20. 20.
    Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys. Intermetallics, 2010, 18: 1758–1765CrossRefGoogle Scholar
  21. 21.
    Gao M C, Zhang B, Guo S M, et al. High-entropy alloys in hexagonal close-packed structure. Metall Mat Trans A, 2016, 47: 3322–3332CrossRefGoogle Scholar
  22. 22.
    Feuerbacher M, Heidelmann M, Thomas C. Hexagonal high-entropy alloys. Mater Res Lett, 2015, 3: 1–6CrossRefGoogle Scholar
  23. 23.
    Takeuchi A, Amiya K, Wada T, et al. High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM, 2014, 66: 1984–1992CrossRefGoogle Scholar
  24. 24.
    Youssef K M, Zaddach A J, Niu C, et al. A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater Res Lett, 2015, 3: 95–99CrossRefGoogle Scholar
  25. 25.
    Wu J M, Lin S J, Yeh J W, et al. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear, 2006, 261: 513–519CrossRefGoogle Scholar
  26. 26.
    Shi Y, Yang B, Liaw P. Corrosion-resistant high-entropy alloys: A review. Metals, 2017, 7: 43CrossRefGoogle Scholar
  27. 27.
    Rao Z, Wang X, Wang Q, et al. Microstructure, mechanical properties, and oxidation behavior of AlxCr0.4CuFe0.4 MnNi high entropy alloys. Adv Eng Mater, 2017, 19: 1600726CrossRefGoogle Scholar
  28. 28.
    Shi Y, Yang B, Xie X, et al. Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corrosion Sci, 2017, 119: 33–45CrossRefGoogle Scholar
  29. 29.
    Zuo T, Gao M C, Ouyang L, et al. Tailoring magnetic behavior of CoFeMnNiX (X= Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater, 2017, 130: 10–18CrossRefGoogle Scholar
  30. 30.
    Zhang Z J, Mao M M, Wang J, et al. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat Commun, 2015, 6: 10143CrossRefGoogle Scholar
  31. 31.
    Seifi M, Li D, Yong Z, et al. Fracture toughness and fatigue crack growth behavior of as-cast high-entropy alloys. JOM, 2015, 67: 2288–2295CrossRefGoogle Scholar
  32. 32.
    Tang Z, Yuan T, Tsai C W, et al. Fatigue behavior of a wrought Al0.5CoCrFeNi two-phase high-entropy alloy. Acta Mater, 2015, 99: 247–258CrossRefGoogle Scholar
  33. 33.
    Pascual F G, Meeker W Q. Estimating fatigue curves with the random fatigue-limit model. Technometrics, 1999, 41: 277–289CrossRefGoogle Scholar
  34. 34.
    Escobar A, Meeker Q. Statistical Methods for Reliability Data. New York: John Wiley & Sons, 1998MATHGoogle Scholar
  35. 35.
    Meeker W Q, LuValle M J. An accelerated life test model based on reliability kinetics. Technometrics, 1995, 37: 133–146CrossRefMATHGoogle Scholar
  36. 36.
    Glaser R E. Estimation for a weibull accelerated life testing model. Naval Res Logistics, 1984, 31: 559–570MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Liaw P K, Hudak S J, Donald J K. Influence of gaseous environments on rates of near-threshold fatigue crack propagation in nicrmov steel. Metallur Trans A, 1982, 13: 1633–1645CrossRefGoogle Scholar
  38. 38.
    Liaw P K, Leax T R, Swaminathan V P, et al. Influence of load ratio on near-threshold fatigue crack propagation behavior. Scripta Metall, 1982, 16: 871–876CrossRefGoogle Scholar
  39. 39.
    Liaw P K, Leax T R, Williams R S, et al. Near-threshold fatigue crack growth behavior in copper. Metallur Trans A, 1982, 13: 1607–1618CrossRefGoogle Scholar
  40. 40.
    Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM International, West Conshohocken, 2015Google Scholar
  41. 41.
    Zinsser Jr W A, Lewandowski J J. Effects of R-ratio on the fatigue crack growth of Nb-Si(ss) and Nb-10Si in situ composites. Metall Mat Trans A, 1998, 29: 1749–1757CrossRefGoogle Scholar
  42. 42.
    Shang J K, Yu W, Ritchie R O. Role of silicon carbide particles in fatigue crack growth in SiC-particulate-reinforced aluminum alloy composites. Mater Sci Eng-A, 1988, 102: 181–192CrossRefGoogle Scholar
  43. 43.
    El-Shabasy A. Effects of load ratio, R, and test temperature on fatigue crack growth of fully pearlitic eutectoid steel (fatigue crack growth of pearlitic steel). Int J Fatigue, 2004, 26: 305–309CrossRefGoogle Scholar
  44. 44.
    Dahar M S, Seifi S M, Bewlay B P, et al. Effects of test orientation on fracture and fatigue crack growth behavior of third generation as-cast Ti-48Al-2Nb-2Cr. Intermetallics, 2015, 57: 73–82CrossRefGoogle Scholar
  45. 45.
    Thurston K V S, Gludovatz B, Hohenwarter A, et al. Effect of temperature on the fatigue-crack growth behavior of the high-entropy alloy CrMnFeCoNi. Intermetallics, 2017, 88: 65–72CrossRefGoogle Scholar
  46. 46.
    Gilbert C J, Ritchie R O, Johnson W L. Fracture toughness and fatigue-crack propagation in a Zr-Ti-Ni-Cu-Be bulk metallic glass. Appl Phys Lett, 1997, 71: 476–478CrossRefGoogle Scholar
  47. 47.
    Masounave J, Baflon J P. Effect of grain size on the threshold stress intensity factor in fatigue of a ferritic steel. Scripta Metall, 1976, 10: 165–170CrossRefGoogle Scholar
  48. 48.
    Stewart A T. The influence of environment and stress ratio on fatigue crack growth at near threshold stress intensities in low-alloy steels. Eng Fract Mech, 1980, 13: 463–478CrossRefGoogle Scholar
  49. 49.
    Boyce B L, Ritchie R O. Effect of load ratio and maximum stress intensity on the fatigue threshold in Ti-6Al-4V. Eng Fract Mech, 2001, 68: 129–147CrossRefGoogle Scholar
  50. 50.
    Suresh S, Ritchie R O. A geometric model for fatigue crack closure induced by fracture surface roughness. Metallur Trans A, 1982, 13: 1627–1631CrossRefGoogle Scholar
  51. 51.
    Liaw P K, Saxena A, Swaminathan V P, et al. Effects of load ratio and temperature on the near-threshold fatigue crack propagation behavior in a CrMoV steel. Metallur Trans A, 1983, 14: 1631–1640CrossRefGoogle Scholar
  52. 52.
    Tsai C W, Chen Y L, Tsai M H, et al. Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrFeNi. J Alloys Compd, 2009, 486: 427–435CrossRefGoogle Scholar
  53. 53.
    Laplanche G, Kostka A, Horst O M, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater, 2016, 118: 152–163CrossRefGoogle Scholar
  54. 54.
    Sathiaraj G D, Bhattacharjee P P, Tsai C W, et al. Effect of heavy cryorolling on the evolution of microstructure and texture during annealing of equiatomic CoCrFeMnNi high entropy alloy. Intermetallics, 2016, 69: 1–9CrossRefGoogle Scholar
  55. 55.
    Yu P F, Cheng H, Zhang L J, et al. Nanotwin’s formation and growth in an AlCoCuFeNi high-entropy alloy. Scripta Mater, 2016, 114: 31–34CrossRefGoogle Scholar
  56. 56.
    Wang Z, Baker I. Interstitial strengthening of a f.c.c. FeNiMnAlCr high entropy alloy. Mater Lett, 2016, 180: 153–156CrossRefGoogle Scholar
  57. 57.
    Zhang X, Misra A, Wang H, et al. Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films. Appl Phys Lett, 2004, 84: 1096–1098CrossRefGoogle Scholar
  58. 58.
    Gray G T, Williams J C, Thompson A W. Roughness-induced crack closure: An explanation for microstructurally sensitive fatigue crack growth. Metallur Trans A, 1983, 14: 421–433CrossRefGoogle Scholar
  59. 59.
    Llorca J. Roughness-induced fatigue crack closure: A numerical study. Fatigue Fracture Eng Mater Struct, 1992, 15: 655–669CrossRefGoogle Scholar
  60. 60.
    Morris W L, James M R, Buck O. A simple model of stress intensity range threshold and crack closure stress. Eng Fract Mech, 1983, 18: 871–877CrossRefGoogle Scholar
  61. 61.
    Gludovatz B, George E P, Ritchie R O. Processing, microstructure and mechanical properties of the CrMnFeCoNi high-entropy alloy. JOM, 2015, 67: 2262–2270CrossRefGoogle Scholar
  62. 62.
    Yang J, Putatunda S K. Near threshold fatigue crack growth behavior of austempered ductile cast iron (ADI) processed by a novel two-step austempering process. Mater Sci Eng-A, 2005, 393: 254–268CrossRefGoogle Scholar
  63. 63.
    Tang Z, Huang L, He W, et al. Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys. Entropy, 2014, 16: 895–911CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • PeiYong Chen
    • 1
  • Chanho Lee
    • 1
  • Shao-Yu Wang
    • 1
  • Mohsen Seifi
    • 2
  • John J. Lewandowski
    • 2
  • Karin A. Dahmen
    • 3
  • HaoLing Jia
    • 1
  • Xie Xie
    • 1
  • BiLin Chen
    • 1
  • Jien-Wei Yeh
    • 4
  • Che-Wei Tsai
    • 4
  • Tao Yuan
    • 5
  • Peter K. Liaw
    • 1
  1. 1.Department of Materials Science and EngineeringThe University of TennesseeKnoxvilleUSA
  2. 2.Department of Materials Science and EngineeringCase Western UniversityClevelandUSA
  3. 3.Department of PhysicsUniversity of IllinoisUrbanaUSA
  4. 4.Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuChina
  5. 5.Department of Industry and System EngineeringOhio UniversityAthensUSA

Personalised recommendations