Skip to main content
Log in

Numerical study of soil-rock mixture: Generation of random aggregate structure

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The soil-rock mixture (SRM) is highly heterogeneous. Before carrying out numerical analysis, a structure model should be generated. A reliable way to obtain such structure is by generating random aggregate structure based on random sequential addition (RSA). The classical RSA is neither efficient nor robust since valid positions to place new inclusions are formulated by trial, which involves repetitive overlapping tests. In this paper, the algorithm of Entrance block between block A and B (EAB) is synergized with background mesh to redesign RSA so that permissible positions to place new inclusions can be predicted, resulting in dramatic improvement in efficiency and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Varnes D J. Landslide types and processes. Highway Research Board Special Report, 1958, 29

    Google Scholar 

  2. Selby M J. Hillslope Materials and Processes. Oxford: Oxford University Press, 1982

    Google Scholar 

  3. Nichol D. Landslides and landslide management in south wales. Quarterly J Eng Geol Hydrogeol, 2001, 34: 415–416

    Article  Google Scholar 

  4. Liao Q, Li X, Dong Y. Characteristics and formation mechanism of geological hazards along the section from Nyingchi to Baxoi of the Sichuan-Tibet highway. J Geomech, 2004, 1: 33–39

    Google Scholar 

  5. Ma R, Liang H, Dai S. Experimental study on the deformation characteristics and strength parameters of rock-soil of landslide of levee’s bank slope. In: Proceeding of the 3rd International Conference on Civil Engineering and Urban Planning. Boca Raton: CRC Press, 2014, 177

    Chapter  Google Scholar 

  6. Zhou J, Cui P, Yang X. Effects of material composition and water content on the mechanical properties of landslide deposits triggered by the wenchuan earthquake. Acta Geol Sin-English Ed, 2016, 90: 242–257

    Google Scholar 

  7. Gao W, Hu R, Oyediran I A, et al. Geomechanical characterization of zhangmu soil-rock mixture deposit. Geotech Geol Eng, 2014, 32: 1329–1338

    Article  Google Scholar 

  8. Larsen K W, Arvidson R E, Jolliff B L, et al. Correspondence and least squares analyses of soil and rock compositions for the Viking Lander 1 and Pathfinder landing sites. J Geophys Res, 2000, 105: 29207–29221

    Article  Google Scholar 

  9. Kokusho T, Hara T, Hiraoka R. Undrained shear strength of granular soils with different particle gradations. J Geotech GeoEnviron Eng, 2004, 130: 621–629

    Article  Google Scholar 

  10. Cao W, Hu T, Luo H, et al. Discussion on a new technique for detecting compactness of soil-rock mixture roadbed. J Hunan Univ, 2008, 2: 22–26

    Google Scholar 

  11. Vallejo L E. Interpretation of the limits in shear strength in binary granular mixtures. Can Geotech J, 2001, 38: 1097–1104

    Article  Google Scholar 

  12. Li X, Liao Q L, He J M. In-situ tests and a stochastic structural model of rock and soil aggregate in the three gorges reservoir area, china. Int J Rock Mech Min Sci, 2004, 41: 702–707

    Article  Google Scholar 

  13. Xu W, Yue Z, Hu R. Study on the mesostructure and mesomechanical characteristics of the soil-rock mixture using digital image processing based finite element method. Int J Rock Mech Min Sci, 2008, 45: 749–762

    Article  Google Scholar 

  14. Fernlund J M R, Zimmerman R W, Kragic D. Influence of volume/mass on grain-size curves and conversion of image-analysis size to sieve size. Eng Geol, 2007, 90: 124–137

    Article  Google Scholar 

  15. Yue Z Q, Chen S, Tham L G. Finite element modeling of geomaterials using digital image processing. Comp Geotech, 2003, 30: 375–397

    Article  Google Scholar 

  16. Wang Y, Zhao M, Li S, et al. Stochastic structural model of rock and soil aggregates by continuum-based discrete element method. Sci China Ser E-Tech Sci, 2005, 48: 95–106

    Google Scholar 

  17. Ng T T. Numerical simulations of granular soil using elliptical particles. Comp Geotech, 1994, 16: 153–169

    Article  Google Scholar 

  18. Ding X L, Li Y X, Wang X. Particle flow modeling mechanical properties of soil and rock mixtures based on digital image. Chin J Rock Mech Eng, 2010, 29: 477–484

    Google Scholar 

  19. Liu Z, Zhou N, Zhang J. Random gravel model and particle flow based numerical biaxial test of solid backfill materials. Int J Min Sci Tech, 2013, 23: 463–467

    Article  Google Scholar 

  20. Yan C, Zheng H. A two-dimensional coupled hydro-mechanical finite-discrete model considering porous media flow for simulating hydraulic fracturing. Int J Rock Mech Min Sci, 2016, 88: 115–128

    Google Scholar 

  21. Yan C, Zheng H. A coupled thermo-mechanical model based on the combined finite-discrete element method for simulating thermal cracking of rock. Int J Rock Mech Min Sci, 2017, 91: 170–178

    Google Scholar 

  22. Ketcham R A, Carlson W D. Acquisition, optimization and interpretation of X-ray computed tomographic imagery: Applications to the geosciences. Comp Geosci, 2001, 27: 381–400

    Article  Google Scholar 

  23. Desrues J, Viggiani G, Besuelle P. Advances in X-ray Tomography for Geomaterials. Wiley Online Library, 2006

    Book  Google Scholar 

  24. Jiang J W, Xiang W, Zhang X Y. Research on mechanical parameters of intact sliding zone soils of Huangtupo landslide based on CT scanning and simulation tests. Chin J Rock Mech Eng, 2011, 30: 1025–1033

    Google Scholar 

  25. Jiang J, Xiang W, Rohn J, et al. Research on mechanical parameters of coarse-grained sliding soil based on CT scanning and numerical tests. Landslides, 2016, 13: 1261–1272

    Article  Google Scholar 

  26. Xu W, Hu R, Yue Z. Development of random mesostructure generating system of soil-rock mixture and study of its mesostructural mechanics based on numerical test. Chin J Rock Mech Eng, 2009, 28: 1652–1665

    Google Scholar 

  27. Wriggers P, Moftah S O. Mesoscale models for concrete: Homogenisation and damage behaviour. Finite Elem Anal Des, 2006, 42: 623–636

    Article  Google Scholar 

  28. Wittmann F H, Roelfstra P E, Sadouki H. Simulation and analysis of composite structures. Mater Sci Eng, 1985, 68: 239–248

    Article  Google Scholar 

  29. Wang Z M, Kwan A K H, Chan H C. Mesoscopic study of concrete I: Generation of random aggregate structure and finite element mesh. Comp Struct, 1999, 70: 533–544

    Article  MATH  Google Scholar 

  30. De Schutter G, Taerwe L. Random particle model for concrete based on Delaunay triangulation. Mater Struct, 1993, 26: 67–73

    Article  Google Scholar 

  31. Liu G, Wang Z. Numerical simulation study of fracture of concrete materials using random aggregate model. J Tsinghua Univ, 1996, 36: 84–89

    MathSciNet  Google Scholar 

  32. Gao Z, Liu G. Two-dimensional random aggregate structure for concrete. J Tsinghua Univ, 2003, 43: 710–714

    Google Scholar 

  33. Tang X, Zhang C. Simulation of meso-fracture for concrete based on the developed random aggregate model. J Tsinghua Univ, 2008, 48: 348–352

    Google Scholar 

  34. Bažant Z P, Tabbara M R, Kazemi M T, et al. Random particle model for fracture of aggregate or fiber composites. J Eng Mech, 1990, 116: 1686–1705

    Article  Google Scholar 

  35. Talbot J, Schaaf P, Tarjus G. Random sequential addition of hard spheres. Mol Phys, 1991, 72: 1397–1406

    Article  Google Scholar 

  36. Sherwood J D. Packing of spheroids in three-dimensional space by random sequential addition. J Phys A-Math Gen, 1997, 30: L839–L843

    Google Scholar 

  37. Cooper D W. Random-sequential-packing simulations in three dimensions for spheres. Phys Rev A, 1988, 38: 522–524

    Article  Google Scholar 

  38. He H. Computational modelling of particle packing in concrete. Dissertation for Doctoral Degree. Delft: Delft University of Technology, 2010

    Google Scholar 

  39. Sonon B, François B, Massart T J. A unified level set based methodology for fast generation of complex microstructural multi-phase RVEs. Comp Methods Appl Mech Eng, 2012, 223–224: 103–122

    Article  Google Scholar 

  40. Ke T C. Application of DDA to block-in-matrix materials. In: Proceedings of the 35th US Symposium on Rock Mechanics (USRMS). Reno: American Rock Mechanics Association, 1995

    Google Scholar 

  41. Jensen R P, Bosscher P J, Plesha M E, et al. DEM simulation of granular media-structure interface: Effects of surface roughness and particle shape. Int J Numer Anal Meth Geomech, 1999, 23: 531–547

    Article  MATH  Google Scholar 

  42. Xu W J, Hu L M, Gao W. Random generation of the meso-structure of a soil-rock mixture and its application in the study of the mechanical behavior in a landslide dam. Int J Rock Mech Min Sci, 2016, 86: 166–178

    Google Scholar 

  43. Wei W, Jiang Q. A modified numerical manifold method for simulation of finite deformation problem. Appl Math Model, 2017, 48: 673–687

    Article  MathSciNet  Google Scholar 

  44. Wei W, Jiang Q, Peng J. New rock bolt model and numerical implementation in numerical manifold method. Int J Geomech, 2017, 17: E4016004

    Google Scholar 

  45. Yang Y, Tang X, Zheng H, et al. Three-dimensional fracture propagation with numerical manifold method. Eng Anal Bound Elem, 2016, 72: 65–77

    Article  MathSciNet  Google Scholar 

  46. Yang Y T, Tang X H, Zheng H, et al. Hydraulic fracturing modeling using the enriched numerical manifold method. Appl Math Model, 2018, 53: 462–486

    Article  Google Scholar 

  47. Yang Y, Zheng H. A three-node triangular element fitted to numerical manifold method with continuous nodal stress for crack analysis. Eng Fract Mech, 2016, 162: 51–75

    Article  Google Scholar 

  48. Yang Y T, Xu D D, Sun G H, et al. Modeling complex crack problems using the three-node triangular element fitted to numerical manifold method with continuous nodal stress. Sci China Tech Sci, 2017, 60: 1537–1547

    Article  Google Scholar 

  49. Yang Y, Sun G, Zheng H, et al. A four-node quadrilateral element fitted to numerical manifold method with continuous nodal stress for crack analysis. Comp Struct, 2016, 177: 69–82

    Article  Google Scholar 

  50. Yang Y, Zheng H. Direct approach to treatment of contact in numerical manifold method. Int J Geomech, 2017, 17: E4016012

    Google Scholar 

  51. Shi G H, Goodman R E. Two dimensional discontinuous deformation analysis. Int J Numer Anal Methods Geomech, 1985, 9: 541–556

    Article  MATH  Google Scholar 

  52. Shi G H. Contact theory. Sci China Tech Sci, 2015, 58: 1450–1496

    Article  Google Scholar 

  53. Ning Y, Yang Z, Wei B, et al. Advances in two-dimensional discontinuous deformation analysis for rock-mass dynamics. Int J Geomech, 2017, 17: E6016001

    Article  Google Scholar 

  54. Shi G H. Discontinuous deformation analysis-a new numerical model for the static and dynamics of block systems. Dissertation for Dcotoral Degree. Berkeley: University of California, 1988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongTao Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Yang, Y. & Zheng, H. Numerical study of soil-rock mixture: Generation of random aggregate structure. Sci. China Technol. Sci. 61, 359–369 (2018). https://doi.org/10.1007/s11431-017-9136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9136-9

Keywords

Navigation