Science China Technological Sciences

, Volume 61, Issue 2, pp 197–203 | Cite as

Effect of cold working and annealing on microstructure and properties of powder metallurgy high entropy alloy

  • Bin Liu
  • LiYou Xu
  • Yong Liu
  • JingShi Wang
  • JiaWen Wang
  • QiHong Fang


An equiatomic CoCrFeNiMn high entropy alloy (HEA) was produced by powder metallurgy method. Cold rolling followed by subsequent annealing was conducted to further optimize the microstructure and mechanical properties. The results show that the SPSed CoCrFeNiMn HEA has an equiaxed single fcc phase microstructrue. Cold rolling results in extensive dislocation pile-up and twinning within the grains. The 80% cold-rolled alloy shows very high yield strength of 1292 MPa, but a limited elongation of 3%. Subsequent annealing produces recrystallization and precipitation of fine σ particles with particle size of 30–100 nm. The annealed alloy has a yield strength of 540 MPa, which is about two to three times of the cast CoCrFeNiMn HEA, while still maintains a high tensile ductility of 41%. The improvement of the tensile properties is caused by the grain boundary strengthening, solid solution strengthening, and precipitation strengthening.


powder metallurgy high entropy alloy annealing cold rolling mechanical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6: 299–303CrossRefGoogle Scholar
  2. 2.
    Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1–93CrossRefGoogle Scholar
  3. 3.
    Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng-A, 2004, 375–377: 213–218CrossRefGoogle Scholar
  4. 4.
    Hemphill M A, Yuan T, Wang G Y, et al. Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater, 2012, 60: 5723–5734CrossRefGoogle Scholar
  5. 5.
    Tseng K K, Yang Y C, Juan C C, et al. A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35. Sci China Tech Sci, 2017, 60Google Scholar
  6. 6.
    Senkov O N, Senkova S V, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater, 2014, 68: 214–228CrossRefGoogle Scholar
  7. 7.
    Liu B, Wang J, Liu Y, et al. Microstructure and mechanical properties of equimolar FeCoCrNi high entropy alloy prepared via powder extrusion. Intermetallics, 2016, 75: 25–30CrossRefGoogle Scholar
  8. 8.
    Liu Y, Wang J, Fang Q, et al. Preparation of superfine-grained high entropy alloy by spark plasma sintering gas atomized powder. Intermetallics, 2016, 68: 16–22CrossRefGoogle Scholar
  9. 9.
    Liu B, Wang J, Chen J, et al. Ultra-high strength TiC/Refractory high-entropy-alloy composite prepared by powder metallurgy. JOM, 2017, 69: 651–656CrossRefGoogle Scholar
  10. 10.
    Stepanov N D, Shaysultanov D G, Chernichenko R S, et al. Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy. J Alloys Compd, 2017, 693: 394–405CrossRefGoogle Scholar
  11. 11.
    He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater, 2016, 102: 187–196CrossRefGoogle Scholar
  12. 12.
    Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCr-FeMnNi high-entropy alloy after severe plastic deformation. Acta Mater, 2015, 96: 258–268CrossRefGoogle Scholar
  13. 13.
    Otto F, Dlouhý A, Pradeep K G, et al. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater, 2016, 112: 40–52CrossRefGoogle Scholar
  14. 14.
    He F, Wang Z, Wu Q, et al. Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures. Scripta Mater, 2017, 126: 15–19CrossRefGoogle Scholar
  15. 15.
    Stepanov N, Tikhonovsky M, Yurchenko N, et al. Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy. Intermetallics, 2015, 59: 8–17CrossRefGoogle Scholar
  16. 16.
    Pickering E J, Muñoz-Moreno R, Stone H J, et al. Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scripta Mater, 2016, 113: 106–109CrossRefGoogle Scholar
  17. 17.
    Salishchev G A, Tikhonovsky M A, Shaysultanov D G, et al. Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. J Alloys Compd, 2014, 591: 11–21CrossRefGoogle Scholar
  18. 18.
    Tang Q H, Huang Y, Huang Y Y, et al. Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing. Mater Lett, 2015, 151: 126–129CrossRefGoogle Scholar
  19. 19.
    Tsai M H, Yuan H, Cheng G, et al. Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy. Intermetallics, 2013, 33: 81–86CrossRefGoogle Scholar
  20. 20.
    Abramova M M, Enikeev N A, Valiev R Z, et al. Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel. Mater Lett, 2014, 136: 349–352CrossRefGoogle Scholar
  21. 21.
    Valiev R Z, Enikeev N A, Murashkin M Y, et al. On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation. Scripta Mater, 2010, 63: 949–952CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Bin Liu
    • 1
  • LiYou Xu
    • 1
  • Yong Liu
    • 1
  • JingShi Wang
    • 1
  • JiaWen Wang
    • 1
  • QiHong Fang
    • 2
  1. 1.State Key Lab of Powder MetallurgyCentral South UniversityChangshaChina
  2. 2.College of Mechanical and Vehicle EngineeringHunan UniversityChangshaChina

Personalised recommendations