Science China Technological Sciences

, Volume 61, Issue 2, pp 189–196 | Cite as

The intrinsic mechanism of corrosion resistance for FCC high entropy alloys

  • XuLiang Shang
  • ZhiJun Wang
  • Feng He
  • JinCheng Wang
  • JunJie Li
  • JiaKang Yu


The concept of high entropy alloys (HEAs) or multi-principal component alloys has inspired a great progress of physical metallurgy along with several unusual phenomena. The high corrosion resistance of HEAs was frequently mentioned but without convincing explanations. In this paper, the intrinsic mechanism of corrosion resistance in FCC HEAs was revealed by designing equal atomic alloys with single solid solution phase. The results showed that the Cr element in FCC HEAs played the dominant role in the corrosion resistance rather than the simple structure from high entropy effect or uniform element distribution.


high entropy alloys corrosion resistance chromium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gao M C, Yeh J W, Liaw P K, et al. High-Entropy Alloys. London: Butterworth Heinemann, 2016CrossRefGoogle Scholar
  2. 2.
    Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6: 299–303CrossRefGoogle Scholar
  3. 3.
    Tsai M H, Yeh J W. High-entropy alloys: A critical review. Mater Res Lett, 2014, 2: 107–123CrossRefGoogle Scholar
  4. 4.
    Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1–93CrossRefGoogle Scholar
  5. 5.
    Wang Z, Huang Y, Yang Y, et al. Atomic-size effect and solid solubility of multicomponent alloys. Scripta Mater, 2015, 94: 28–31CrossRefGoogle Scholar
  6. 6.
    He F, Wang Z, Cheng P, et al. Designing eutectic high entropy alloys of CoCrFeNiNbx. J Alloys Compd, 2016, 656: 284–289CrossRefGoogle Scholar
  7. 7.
    Lu Y, Gao X, Jiang L, et al. Directly cast bulk eutectic and neareutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater, 2017, 124: 143–150CrossRefGoogle Scholar
  8. 8.
    Lu Y, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys. Sci Rep, 2015, 4: 6200CrossRefGoogle Scholar
  9. 9.
    Shi Y, Yang B, Liaw P. Corrosion-resistant high-entropy alloys: A review. Metals, 2017, 7: 43CrossRefGoogle Scholar
  10. 10.
    Chen Y Y, Hong U T, Yeh J W, et al. Selected corrosion behaviors of a Cu0.5NiAlCoCrFeSi bulk glassy alloy in 288°C high-purity water. Scripta Mater, 2006, 54: 1997–2001CrossRefGoogle Scholar
  11. 11.
    Chen Y Y, Duval T, Hong U T, et al. Corrosion properties of a novel bulk Cu0.5NiAlCoCrFeSi glassy alloy in 288°C high-purity water. Mater Lett, 2007, 61: 2692–2696CrossRefGoogle Scholar
  12. 12.
    Hsu Y J, Chiang W C, Wu J K. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution. Mater Chem Phys, 2005, 92: 112–117CrossRefGoogle Scholar
  13. 13.
    Lin C M, Tsai H L. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy. Intermetallics, 2011, 19: 288–294CrossRefGoogle Scholar
  14. 14.
    Chou Y L, Yeh J W, Shih H C. Effect of molybdenum on the pitting resistance of Co1.5CrFeNi1.5Ti0.5Mox alloys in chloride solutions. Corrosion, 2011, 67: 085002–1–085002–6Google Scholar
  15. 15.
    Chou Y L, Yeh J W, Shih H C. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments. Corrosion Sci, 2010, 52: 2571–2581CrossRefGoogle Scholar
  16. 16.
    Cheng J B, Liang X B, Xu B S. Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high-entropy alloy coatings. Surf Coatings Tech, 2014, 240: 184–190CrossRefGoogle Scholar
  17. 17.
    Yao M J, Pradeep K G, Tasan C C, et al. A novel, single phase, nonequiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scripta Mater, 2014, 72-73: 5–8CrossRefGoogle Scholar
  18. 18.
    Lucas M S, Wilks G B, Mauger L, et al. Absence of long-range chemical ordering in equimolar FeCoCrNi. Appl Phys Lett, 2012, 100: 251907CrossRefGoogle Scholar
  19. 19.
    Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics, 2014, 46: 131–140CrossRefGoogle Scholar
  20. 20.
    He F, Wang Z, Wu Q, et al. Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures. Scripta Mater, 2017, 126: 15–19CrossRefGoogle Scholar
  21. 21.
    Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts. Acta Mater, 2017, 122: 448–511CrossRefGoogle Scholar
  22. 22.
    Wilde B E. A critical appraisal of some popular laboratory electrochemical tests for predicting the localized corrosion resistance of stainless alloys in sea water. Corrosion, 1972, 28: 283–291CrossRefGoogle Scholar
  23. 23.
    Tuna S H, Pekmez N O, Keyf F, et al. The influence of the pure metal components of four different casting alloys on the electrochemical properties of the alloys. Dental Mater, 2009, 25: 1096–1103CrossRefGoogle Scholar
  24. 24.
    Kocijan A, Milošev I, Pihlar B. Cobalt-based alloys for orthopaedic applications studied by electrochemical and XPS analysis. J Mater Sci-Mater Med, 2004, 15: 643–650CrossRefGoogle Scholar
  25. 25.
    Sekine I, Chinda A. Comparison of the corrosion behavior of pure Fe, Ni, Cr, and type 304 stainless steel in formic acid solution. Corrosion, 1984, 40: 95–100CrossRefGoogle Scholar
  26. 26.
    Horvath J, Uhlig H H. Critical potentials for pitting corrosion of Ni, Cr-Ni, Cr-Fe, and related stainless steels. J Electrochem Soc, 1968, 115: 791–795CrossRefGoogle Scholar
  27. 27.
    Saji V S, Choe H C. Electrochemical behavior of Co-Cr and Ni-Cr dental cast alloys. Trans Nonferrous Met Soc China, 2009, 19: 785–790CrossRefGoogle Scholar
  28. 28.
    Ernur D, Kondo S, Shamiryan D, et al. Investigation of barrier and slurry effects on the galvanic corrosion of copper. Microelectron Eng, 2002, 64: 117–124CrossRefGoogle Scholar
  29. 29.
    Wood G C, Wright I G, Hodgkiess T, et al. A Comparison of the Oxidation of Fe-Cr, Ni-Cr and Co-Cr alloys in oxygen and water vapour. Mater Corrosion, 1970, 21: 900–910CrossRefGoogle Scholar
  30. 30.
    Hodgson A W E, Kurz S, Virtanen S, et al. Passive and transpassive behaviour of CoCrMo in simulated biological solutions. Electrochim Acta, 2004, 49: 2167–2178CrossRefGoogle Scholar
  31. 31.
    Kelly J R, Rose T C. Nonprecious alloys for use in fixed prosthodontics: A literature review. J Prosthet Dent, 1983, 49: 363–370CrossRefGoogle Scholar
  32. 32.
    El-Basiouny M S, Haruyama S. The polarization behaviour of chromium in acidic sulphate solutions. Corrosion Sci, 1977, 17: 405–414CrossRefGoogle Scholar
  33. 33.
    Agostinelli E, Battistoni C, Fiorani D, et al. An XPS study of the electronic structure of the ZnxCd1-xCr2 X 4(X=S, Se) spinel system. J Phys Chem Solids, 1989, 50: 269–272CrossRefGoogle Scholar
  34. 34.
    Allen G C, Harris S J, Jutson J A, et al. A study of a number of mixed transition metal oxide spinels using X-ray photoelectron spectroscopy. Appl Surf Sci, 1989, 37: 111–134CrossRefGoogle Scholar
  35. 35.
    Jiang Y, Tan H, Wang Z, et al. Influence of Creq/Nieq on pitting corrosion resistance and mechanical properties of UNS S32304 duplex stainless steel welded joints. Corrosion Sci, 2013, 70: 252–259CrossRefGoogle Scholar
  36. 36.
    Potgieter J H, Olubambi P A, Cornish L, et al. Influence of nickel additions on the corrosion behaviour of low nitrogen 22% Cr series duplex stainless steels. Corrosion Sci, 2008, 50: 2572–2579CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • XuLiang Shang
    • 1
  • ZhiJun Wang
    • 1
  • Feng He
    • 1
  • JinCheng Wang
    • 1
  • JunJie Li
    • 1
  • JiaKang Yu
    • 1
  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations