Skip to main content
Log in

Thermodynamic performance of Dual-Miller cycle (DMC) with polytropic processes based on power output, thermal efficiency and ecological function

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This study reports a new model of an air standard Dual-Miller cycle (DMC) with two polytropic processes and heat transfer loss. The two reversible adiabatic processes which could not be realized in practice are replaced with two polytropic processes in order to more accurately reflect the practical working performance. The heat transfer loss is taken into account. The expressions of power output, thermal efficiency, entropy generation rate (EGR) and ecological function are addressed using finite-time thermodynamic theory. Through numerical calculations, the influences of compression ratio, cut-off ratio and polytropic exponent on the performance are thermodynamically analyzed. The model can be simplified to other cycle models under specific conditions, which means the results have an certain universality and may be helpful in the design of practical heat engines. It is shown that the entropy generation minimization does not always lead to the best system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andresen B. Finite-Time Thermodynamics. Physics Laboratory II. University of Copenhagen, 1983

    Google Scholar 

  2. Andresen B, Berry R S, Ondrechen M J, et al. Thermodynamics for processes in finite time. Acc Chem Res, 1984, 17: 266–271

    Article  Google Scholar 

  3. Bejan A. Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes. J Appl Phys, 1996, 79: 1191–1218

    Article  Google Scholar 

  4. Berry R S, Kazakov V A, Sieniutycz S, et al. Thermodynamic Optimization of Finite Time Processes. Chichester: Wiley, 1999

    Google Scholar 

  5. Chen L G, Wu C, Sun F R. Finite time thermodynamic optimization or entropy generation minimization of energy systems. J Non-Equilib Thermodyn, 1999, 24: 327–359

    MATH  Google Scholar 

  6. Salamon P, Nulton J D, Siragusa G, et al. Principles of control thermodynamics. Energy, 2001, 26: 307–319

    Article  Google Scholar 

  7. Chen L G, Sun F R. Advances in Finite Time Thermodynamics: Analysis and optimization. New York: Nova Science Publishers, 2004

    Google Scholar 

  8. Chen L G. Finite Time Thermodynamic Analysis of Irreversible Process and Cycles (in Chinese). Beijing: Higher Education Press, 2005

    Google Scholar 

  9. Sieniutycz S, Jezowski J. Energy Optimization in Process Systems. Oxford, UK: Elsevier, 2009

    Google Scholar 

  10. Andresen B. Current trends in finite-time thermodynamics. Angew Chem Int Ed, 2011, 50: 2690–2704

    Article  Google Scholar 

  11. Wu F, Chen L G, Sun F R, et al. Finite Time Thermodynamic Optimization of Stirling Machine (in Chinese). Beijing: Chemical Industry Press, 2008

    Google Scholar 

  12. Sieniutycz S, Jezowski J. Energy Optimization in Process Systems and Fuel Cells. Oxford, UK: Elsevier, 2013

    Google Scholar 

  13. Medina A, Curto-Risso P L, Calvo-Hernández A, et al. Quasi-Dimensional Simulation of Spark Ignition Engines. From Thermodynamic Optimization to Cyclic Variability. London: Springer, 2014

    Google Scholar 

  14. Ding Z M, Chen L G, Wang W H, et al. Advances in finite time thermodynamic performance optimization of three kinds of micro energy conversion systems (in Chinese). Sci Sin Tech, 2015, 45: 889–918

    Google Scholar 

  15. Hoffmann K H, Andresen B, Salamon P. Finite-time thermodynamics tools to analyze dissipative processes. In: Dinner A R, Eds. Proceedings of the 240 Conference: Science’s Great Challences, Advances in Chemical Physics. Volume 157. New Jersey: Wiley, 2015. 57–67

    Google Scholar 

  16. Ahmadi M H, Ahmadi M A, Sadatsakkak S A. Thermodynamic analysis and performance optimization of irreversible Carnot refrigerator by using multi-objective evolutionary algorithms (MOEAs). Renew Sust Energ Rev, 2015, 51: 1055–1070

    Article  Google Scholar 

  17. Chen L G, Meng F K, Sun F R. Thermodynamic analyses and optimization for thermoelectric devices: The state of the arts. Sci China Tech Sci, 2016, 59: 442–455

    Article  Google Scholar 

  18. Chen L, Feng H, Xie Z. Generalized thermodynamic optimization for iron and steel production processes: Theoretical exploration and application cases. Entropy, 2016, 18: 353

    Article  Google Scholar 

  19. Sieniutycz S. Thermodynamic Approaches in Engineering Systems. Oxford: Elsevier, 2016

    Google Scholar 

  20. Chen L G, Xia S J. Generalized Thermodynamics Dynamic Optimization of Irreversible Processes (in Chinese). Beijing: Science Press, 2016

    Google Scholar 

  21. Chen L G, Xia S J. Generalized Thermodynamics Dynamic Optimization of Irreversible Cycles (in Chinese). Beijing: Science Press, 2016

    Google Scholar 

  22. Bi Y H, Chen L G. Finite time thermodynamic optimization of air heat pump performance (in Chinese). Beijing: Science Press, 2017

    Google Scholar 

  23. Ahmadi M H, Ahmadi M A, Pourfayaz F. Thermal models for analysis of performance of Stirling engine: A review. Renew Sust Energ Rev, 2017, 68: 168–184

    Article  Google Scholar 

  24. Ge Y, Chen L, Sun F. Progress in finite time thermodynamic studies for internal combustion engine cycles. Entropy, 2016, 18: 139

    Article  Google Scholar 

  25. Chen L, Zhang W, Sun F. Power, efficiency, entropy-generation rate and ecological optimization for a class of generalized irreversible universal heat-engine cycles. Appl Energy, 2007, 84: 512–525

    Article  Google Scholar 

  26. Zhou B, Cheng X T, Liang X G. Power output analyses and optimizations of the Stirling cycle. Sci China Tech Sci, 2013, 56: 228–236

    Google Scholar 

  27. Ge Y, Chen L, Sun F. Optimal path of piston motion of irreversible Otto cycle for minimum entropy generation with radiative heat transfer law. J Energy Inst, 2012, 85: 140–149

    Article  Google Scholar 

  28. Wang C, Chen L, Xia S, et al. Optimal concentration configuration of consecutive chemical reaction A ⇔ B ⇔ C for minimum entropy generation. J Non-Equilib ThermoDyn, 2016, 41: 313–326

    Article  Google Scholar 

  29. Wu Y Q. Analyses of thermodynamic performance for the endoreversible Otto cycle with the concepts of entropy generation and entransy. Sci China Tech Sci, 2017, 60: 692–700

    Google Scholar 

  30. Angulo-Brown F. An ecological optimization criterion for finite-time heat engines. J Appl Phys, 1991, 69: 7465–7469

    Article  Google Scholar 

  31. Yan Z J. Comment on “ecological optimization criterion for finitetime heat engines”. J Appl Phys, 1993, 73: 3583

    Article  Google Scholar 

  32. Angulo-Brown F, Fernández-Betanzos J, Diaz-Pico C A. Compression ratio of an optimized air standard Otto-cycle model. Eur J Phys, 1994, 15: 38–42

    Article  Google Scholar 

  33. Chen L G, Sun F R, Chen W Z. The ecological quality factor for thermodynamic cycles (in Chinese). J Eng Therm Energy Power, 1994, 9: 374–376

    Google Scholar 

  34. Long R, Li B, Liu Z, et al. Ecological analysis of a thermally regenerative electrochemical cycle. Energy, 2016, 107: 95–102

    Article  Google Scholar 

  35. Üst Y, Sahin B, Kodal A. Ecological coefficient of performance (ECOP) optimization for generalized irreversible Carnot heat engines. J Energy Inst, 2005, 78: 145–151

    Article  Google Scholar 

  36. Ust Y, Sahin B, Sogut O S. Performance analysis and optimization of an irreversible dual-cycle based on an ecological coefficient of performance criterion. Appl Energy, 2005, 82: 23–39

    Article  Google Scholar 

  37. Ust Y, Sahin B, Kodal A. Performance analysis of an irreversible Brayton heat engine based on ecological coefficient of performance criterion. Int J Thermal Sci, 2006, 45: 94–101

    Article  Google Scholar 

  38. Ust Y. Performance analysis and optimization of irreversible air refrigeration cycles based on ecological coefficient of performance criterion. Appl Thermal Eng, 2009, 29: 47–55

    Article  Google Scholar 

  39. Gonca G, Sahin B. Performance optimization of an air-standard irreversible dual-atkinson cycle engine based on the ecological coefficient of performance criterion. Sci World J, 2014, 2014: 1–10

    Article  Google Scholar 

  40. Ust Y, Sahin B, Cakir M. Ecological coefficient of performance analysis and optimisation of gas turbines by using exergy analysis approach. Int J Exergy, 2016, 21: 39–69

    Article  Google Scholar 

  41. Salamon P, Hoffmann K H, Schubert S, et al. What conditions make minimum entropy production equivalent to maximum power production? J Non-Equilib Thermodyn, 2001, 26: 73–83

    Article  MATH  Google Scholar 

  42. Blank D A, Wu C. The effects of combustion on a power-optimized endoreversible Dual cycle. Energy Conv Manag, 1994, 14: 98–103

    Google Scholar 

  43. Chen L, Sun F, Wu C. Optimal performance of an irreversible dualcycle. Appl Energy, 2004, 79: 3–14

    Article  Google Scholar 

  44. Ust Y, Sahin B, Kayadelen H K, et al. Heat transfer effects on the performance of an air-standard irreversible dual cycle. Int J Vehicle Des, 2013, 63: 102

    Article  Google Scholar 

  45. Ghatak A, Chakraborty S. Effect of external irreversibilities and variable thermal properties of working fluid on thermal performance of a Dual internal combustion engine cycle. Strojnicky Casopsis (J Mech Energy), 2007, 58: 1–12

    Google Scholar 

  46. Wang W, Chen L, Sun F, et al. The effect of friction on the performance of an air standard dual cycle. Exergy An Int J, 2002, 2: 340–344

    Article  Google Scholar 

  47. Ge Y, Chen L, Sun F. Finite-time thermodynamic modeling and analysis for an irreversible Dual cycle. Math Comp Model, 2009, 50: 101–108

    Article  MathSciNet  MATH  Google Scholar 

  48. Al-Sarkhi A, Akash B A, Jaber J O, et al. Efficiency of miller engine at maximum power density. Int Commun Heat Mass Transfer, 2002, 29: 1159–1167

    Article  Google Scholar 

  49. Chen L G, Ge Y L, Sun F R, et al. The performance of a Miller cycle with heat transfer, friction and variable specific heats of working fluid. Termotehnica, 2010, 14: 24–32

    Google Scholar 

  50. Chen L, Ge Y, Sun F, et al. Finite-time thermodynamic modelling and analysis for an irreversible Miller cycle. Int J Ambient Energy, 2011, 32: 87–94

    Article  Google Scholar 

  51. Lin J, Xu Z, Chang S, et al. Finite-time thermodynamic modeling and analysis of an irreversible Miller cycle working on a four-stroke engine. Int Commun Heat Mass Transfer, 2014, 54: 54–59

    Article  Google Scholar 

  52. Gonca G, Sahin B, Ust Y, et al. Comparison of steam injected diesel engine and Miller cycled diesel engine by using two zone combustion model. J Energy Inst, 2015, 88: 43–52

    Article  Google Scholar 

  53. Gonca G, Sahin B, Parlak A, et al. Theoretical and experimental investigation of the Miller cycle diesel engine in terms of performance and emission parameters. Appl Energy, 2015, 138: 11–20

    Article  Google Scholar 

  54. Ebrahimi R. Second law analysis on an air-standard miller engine. Acta Phys Pol A, 2016, 129: 1079–1082

    Article  Google Scholar 

  55. Mousapour A, Hajipour A, Rashidi M M, et al. Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction. Energy, 2016, 94: 100–109

    Article  Google Scholar 

  56. Zhao J. Research and application of over-expansion cycle (Atkinson and Miller) engines—A review. Appl Energ, 2017, 185: 300–319

    Article  Google Scholar 

  57. Gonca G, Sahin B, Ust Y. Performance maps for an air-standard irreversible Dual-Miller cycle (DMC) with late inlet valve closing (LIVC) version. Energy, 2013, 54: 285–290

    Article  Google Scholar 

  58. Gonca G, Sahin B, Ust Y. Investigation of heat transfer influences on performance of air-standard irreversible Dual-Miller cycle. J Thermophys Heat Transfer, 2015, 29: 678–683

    Article  Google Scholar 

  59. Gonca G. Comparative performance analyses of irreversible OMCE (Otto Miller cycle engine)-DiMCE (Diesel miller cycle engine)-DMCE (Dual Miller cycle engine). Energy, 2016, 109: 152–159

    Article  Google Scholar 

  60. Ust Y, Arslan F, Ozsari I, et al. Thermodynamic performance analysis and optimization of DMC (Dual Miller Cycle) cogeneration system by considering exergetic performance coefficient and total exergy output criteria. Energy, 2015, 90: 552–559

    Article  Google Scholar 

  61. Gonca G. Thermo-ecological analysis of irreversible Dual-Miller Cycle (DMC) engine based on the ecological coefficient of performance (ECOP) criterion. Iran J Sci Tech Trans Mech Eng, 2016: 1–12

    Google Scholar 

  62. Gonca G, Sahin B. Thermo-ecological performance analyses and optimizations of irreversible gas cycle engines. Appl Thermal Eng, 2016, 105: 566–576

    Article  Google Scholar 

  63. Wu Z X, Chen L G, Ge Y L, et al. Ecological objective function optimization of an irreversible Dual-Miller cycle with linear variable specific heat ratio of the working fluid (in Chinese). Energy Conser, 2016, 6: 20–27

    Google Scholar 

  64. Wu Z X, Chen L G, Ge Y L, et al. Power, efficiency, ecological function and ecological coefficient of performance of an irreversible Dual-Miller cycle (DMC) with nonlinear variable specific heat ratio of working fluid. Euro Phys J Plus, 2017, 132: 209

    Article  Google Scholar 

  65. Huleihil M, Mazor G. Irreversible performance characteristics of air standard Otto cycles with polytropic processes. Appl Mech Eng, 2012, 1: 1000111

    Google Scholar 

  66. Gong S W, Chen L G, Sun F R. Performance analysis and optimization of endoreversible Lenoir cycle with polytropic process (in Chinese). Energy Conser, 2013, 32: 22–26

    Google Scholar 

  67. Xiong B, Chen L G, Ge Y L, et al. Finite-time thermodynamic analysis of an endoreversible Otto cycle with polytropic process (in Chinese). Power Energy, 2014, 35: 166–171

    Google Scholar 

  68. Zhang K, Chen L G, Qin X Y, et al. Finite time thermodynamic analysis of irreversible universal reciprocating cycle with polytropic process (in Chinese). Energy Conser, 2015, 34: 15–21

    Google Scholar 

  69. Klein S A. An explanation for observed compression ratios in internal combustion engines. J Eng Gas Turbines Power, 1991, 113: 511–513

    Article  Google Scholar 

  70. Ge Y, Chen L, Sun F. Ecological optimization of an irreversible otto cycle. Arab J Sci Eng, 2013, 38: 373–381

    Article  Google Scholar 

  71. Ge Y, Chen L, Sun F, et al. Effects of heat transfer and variable specific heats of working fluid on performance of a Miller cycle. Int J Ambient Energy, 2005, 26: 203–214

    Article  Google Scholar 

  72. Chen L, Zheng T, Sun F, et al. The power and efficiency characteristics for an irreversible Otto cycle. Int J Ambient Energy, 2003, 24: 195–200

    Article  Google Scholar 

  73. Ebrahimi R. Performance of an irreversible Diesel cycle under variable stroke length and compression ratio. J Am Sci, 2009, 5: 58–64

    Google Scholar 

  74. Bejan A. Models of power plants that generate minimum entropy while operating at maximum power. Am J Phys, 1996, 64: 1054–1059

    Article  Google Scholar 

  75. Guo Z Y, Zhu H Y, Liang X G. Entransy—A physical quantity describing heat transfer ability. Int J Heat Mass Transfer, 2007, 50: 2545–2556

    Article  MATH  Google Scholar 

  76. Chen Q, Liang X G, Guo Z Y. Entransy theory for the optimization of heat transfer—A review and update. Int J Heat Mass Transfer, 2013, 63: 65–81

    Article  Google Scholar 

  77. Cheng X T, Liang X G. Entransy, entransy dissipation and entransy loss for analyses of heat transfer and heat-work conversion processes. J Therm Sci Technol, 2013, 8: 337–352

    Article  Google Scholar 

  78. Cheng X T, Liang X G. Entransy: Its physical basis, applications and limitations. Chin Sci Bull, 2014, 59: 5309–5323

    Article  Google Scholar 

  79. Chen L G. Progress in optimization of mass transfer processes based on mass entransy dissipation extremum principle. Sci China Tech Sci, 2014, 57: 2305–2327

    Article  Google Scholar 

  80. Cheng X T, Liang X G. Entransy analyses of heat-work conversion systems with inner irreversible thermodynamic cycles. Chin Phys B, 2015, 24: 120503

    Article  Google Scholar 

  81. Chen L G, Feng H J. Multi-objective Constructal Optimization for Flow and Heat and Mass Transfer Processes. Beijing: Science Press, 2016

    Google Scholar 

  82. Zhang T, Liu X H, Tang H D, et al. Progress of entransy analysis on the air-conditioning system in buildings. Sci China Tech Sci, 2016, 59: 1463–1474

    Article  Google Scholar 

  83. Kim K H, Kim K. Comparative analyses of energy-exergy-entransy for the optimization of heat-work conversion in power generation systems. Int J Heat Mass Transfer, 2015, 84: 80–90

    Article  Google Scholar 

  84. Cheng X T, Zhao J M, Liang X G. Discussion on the extensions of the entransy theory. Sci China Tech Sci, 2017, 60: 363–373

    Article  Google Scholar 

  85. Cheng X T, Liang X G. Entransy analyses of the thermodynamic cycle in a turbojet engine. Sci China Tech Sci, 2017, 60: 1160–1167

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LinGen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, J., Chen, L., Wu, Z. et al. Thermodynamic performance of Dual-Miller cycle (DMC) with polytropic processes based on power output, thermal efficiency and ecological function. Sci. China Technol. Sci. 61, 453–463 (2018). https://doi.org/10.1007/s11431-017-9108-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9108-2

Keywords

Navigation