Skip to main content
Log in

Phase transition and photoluminescence properties of Eu3+-doped ZnMoO4 red phosphors

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Eu3+-doped ZnMoO4 with different doping concentrations were synthesized by a hydrothermal method. The effects of Eu3+ doping on the phase structure and photoluminescence (PL) properties of ZnMoO4 were investigated. The result showed that the introduction of Eu3+ could lead to phase transition of ZnMoO4. With the increase of Eu3+ doping amount, β-ZnMoO4 was transformed to α phase gradually, which led to different photoluminescence performances. The optimized doping concentration of Eu3+ was 6 mol% for the highest emission intensity at 615 nm. Its CIE chromaticity coordinates were (0.667, 0.331), which were very close to the values of standard chromaticity (0.67, 0.33) for National Television Standards Committee (NTSC) system. Therefore, Eu3+-doped ZnMoO4 is considered to be a promising red-emitting phosphor for white LED applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haque M M, Kim D K. Luminescent properties of Eu3+ activated MLa2(MoO4)4 based (M=Ba, Sr and Ca) novel red-emitting phosphors. Mater Lett, 2009, 63: 793–796

    Article  Google Scholar 

  2. Guo C, Luan L, Chen C, et al. Preparation of Y2O2S:Eu3+phosphors by a novel decomposition method. Mater Lett, 2008, 62: 600–602

    Article  Google Scholar 

  3. Hu Y, Zhuang W, Ye H, et al. Preparation and luminescent properties of (Ca1-x,Srx)S:Eu2+ red-emitting phosphor for white LED. J Lumin, 2005, 111: 139–145

    Article  Google Scholar 

  4. Höppe H A, Lutz H, Morys P, et al. Luminescence in Eu2+-doped Ba2Si5N8: Fluorescence, thermoluminescence, and upconversion. J Phys Chem Solids, 2000, 61: 2001–2006

    Article  Google Scholar 

  5. Liu T C, Cheng B M, Hu S F, et al. Highly stable red oxynitride β-SiAlON:Pr3+ phosphor for light-emitting diodes. Chem Mater, 2011, 23: 3698–3705

    Article  Google Scholar 

  6. Kang F, Peng M, Xu S, et al. Broadly tunable emission from CaMoO4:Bi phosphor based on locally modifying the microenvironment around Bi3+ ions. Eur J Inorg Chem, 2014, 2014: 1373–1380

    Article  Google Scholar 

  7. Kang F, Yang X, Peng M, et al. Red photoluminescence from Bi3+and the influence of the oxygen-vacancy perturbation in ScVO4: A combined experimental and theoretical study. J Phys Chem C, 2014, 118: 7515–7522

    Article  Google Scholar 

  8. Kang F, Zhang H, Wondraczek L, et al. Band-gap modulation in single Bi3+-doped yttrium-scandium-niobium vanadates for color tuning over the whole visible spectrum. Chem Mater, 2016, 28: 2692–2703

    Article  Google Scholar 

  9. Kang F, Zhang Y, Wondraczek L, et al. Processing-dependence and the nature of the blue-shift of Bi3+-related photoemission in ScVO4 at elevated temperatures. J Mater Chem C, 2014, 2: 9850–9857

    Article  Google Scholar 

  10. Kang F, Peng M, Zhang Q, et al. Abnormal anti-quenching and controllable multi-transitions of Bi3+luminescence by temperature in a yellow-emitting LuVO4:Bi3+ phosphor for UV-converted white LEDs. Chem Eur J, 2014, 20: 11522–11530

    Article  Google Scholar 

  11. Zhao J, Guo C, Li T, et al. Synthesis, electronic structure and photoluminescence properties of Ba2BiV3O11:Eu3+ red phosphor. Dyes Pigments, 2016, 132: 159–166

    Article  Google Scholar 

  12. Huang L, Zhu Y, Zhang X, et al. HF-free hydrothermal route for synthesis of highly efficient narrow-band red emitting phosphor K2Si1–x F6:xMn4+ for warm white light-emitting diodes. Chem Mater, 2016, 28: 1495–1502

    Article  Google Scholar 

  13. You P. Effect of Tb3+-coped concentration on properties of Li2SrSiO4:Tb3+ phosphor. Adv Mater Res, 2014, 919-921: 2052–2056

    Article  Google Scholar 

  14. Mi R, Zhao C, Xia Z. Synthesis, structure, and tunable luminescence properties of novel Ba3NaLa(PO4)3F:Eu2+,Mn2+ phosphors. J Am Ceram Soc, 2014, 97: 1802–1808

    Article  Google Scholar 

  15. Guo C, Yu J, Ding X, et al. A dual-emission phosphor Li-CaBO3:Ce3+,Mn2+ with energy transfer for near-UV LEDs. J Electrochem Soc, 2011, 158: J42

    Article  Google Scholar 

  16. Zhang J, Gong S, Yu J, et al. Thermally stable white emitting Eu3+ complex@nanozeolite@luminescent glass composite with high CRI for organic-resin-free warm white LEDs. ACS Appl Mater Interfaces, 2017, 9: 7272–7281

    Article  Google Scholar 

  17. Dai P P, Li C, Zhang X T, et al. A single Eu2+-activated high-colorrendering oxychloride white-light phosphor for white-light-emitting diodes. Light Sci Appl, 2016, 5: e16024–16024

    Article  Google Scholar 

  18. Kang F, Zhang Y, Peng M. Controlling the energy transfer via multi luminescent centers to achieve white light/tunable emissions in a single-phased X2-type Y2SiO5:Eu3+,Bi3+ phosphor for ultraviolet converted LEDs. Inorg Chem, 2015, 54: 1462–1473

    Article  Google Scholar 

  19. Guo C, Ding X, Xu Y. Luminescent properties of Eu3+-doped BaLn2ZnO5 (Ln=La, Gd, and Y) phosphors by the sol-gel method. J Am Ceramic Soc, 2010, 93: 1708–1713

    Article  Google Scholar 

  20. Zhou L Y, Wei J S, Gong F Z, et al. A potential red phosphor Zn-MoO4:Eu3+ for light-emitting diode application. J Solid State Chem, 2008, 181: 1337–1341

    Article  Google Scholar 

  21. Mikhailik V B, Kraus H, Wahl D, et al. Optical and luminescence studies of ZnMoO4 using vacuum ultraviolet synchrotron radiation. Nucl Instrum Method Phys Res A, 2006, 562: 513–516

    Article  Google Scholar 

  22. Ivleva L I, Voronina I S, Berezovskaya L Y, et al. Growth and properties of ZnMoO4 single crystals. Crystallogr Rep, 2008, 53: 1087–1090

    Article  Google Scholar 

  23. Spassky D, Vasil’Ev A, Kamenskikh I, et al. Luminescence investigation of zinc molybdate single crystals. Phys Status Solidi A, 2009, 206: 1579–1583

    Article  Google Scholar 

  24. Xei A, Yuan X, Wang F, et al. Enhanced red emission in Zn- MoO4:Eu3+ by charge compensation. J Phys D: Appl Phys, 2010, 43: 55101–55105

    Article  Google Scholar 

  25. Yu L, Nogami M. The synthesis and photoluminescent properties of one-dimensional ZnMoO4:Eu3+ nanocrystals. Mater Lett, 2010, 64: 1644–1646

    Article  Google Scholar 

  26. Reichelt W, Weber T, Söhnel T, et al. Mischkristallbildung im system CuMoO4/ZnMoO4. Z Anorg Allg Chem, 2000, 626: 2020–2027

    Article  Google Scholar 

  27. Söhnel T, Reichelt W, Oppermann H, et al. Zum system Zn/Mo/O.I.Phasenbestand und eigenschaften der ternären zinkmolybdate struktur von Zn3Mo2O9. Z Anorg Allg Chem, 1996, 622: 1274–1280

    Article  Google Scholar 

  28. Pavani K, Ramanan A. Influence of 2-aminopyridine on the formation of molybdates under hydrothermal conditions. Eur J Inorg Chem, 2005, 2005: 3080–3087

    Article  Google Scholar 

  29. Liu B M, Zhang Z G, Zhang K, et al. Unconventional luminescent centers in metastable phases created by topochemical reduction reactions. Angew Chem Int Ed, 2016, 55: 4967–4971

    Article  Google Scholar 

  30. Ju X, Li X, Li W, et al. Luminescence properties of ZnMoO4:Tb3+ green phosphor prepared via co-precipitation. Mater Lett, 2011, 65: 2642–2644

    Article  Google Scholar 

  31. Cavalcante L S, Moraes E, Almeida M A P, et al. A combined theoretical and experimental study of electronic structure and optical properties of β-ZnMoO4 microcrystals. Polyhedron, 2013, 54: 13–25

    Article  Google Scholar 

  32. Keereeta Y, Thongtem T, Thongtem S. Effect of medium solvent ratios on morphologies and optical properties of a-ZnMoO4, ß-ZnMoO4 and ZnMoO4·0.8H2O crystals synthesized by microwave-hydrothermal/ solvothermal method. Superlattice MicroSt, 2014, 69: 253–264

    Article  Google Scholar 

  33. Sun C, Xue D. Crystal growth and design of sapphire: experimental and calculation studies of anisotropic crystal growth upon pulling directions. Cryst Growth Des, 2014, 14: 2282–2287

    Article  Google Scholar 

  34. Sun C, Xue D. Hydrogen bonding nature during ADP crystallization. J Mol Structure, 2014, 1059: 338–342

    Article  Google Scholar 

  35. Liu F, Fang Y, Hou J, et al. Garnet-based red emitting phosphors Li6MLa2Nb2O12: Eu3+ (M=Ca, Sr, Ba): photoluminescence improvement by changing crystal lattice. Ceramics Int, 2014, 40: 3237–3241

    Article  Google Scholar 

  36. Chen L, Liu Y, Li Y. Preparation and characterization of ZrO2:Eu3+ phosphors. J Alloys Compd, 2004, 381: 266–271

    Article  Google Scholar 

  37. Anitha M, Ramakrishnan P, Chatterjee A, et al. Spectral properties and emission efficiencies of GdVO4 phosphors. Appl Phys A, 2002, 74: 153–162

    Article  Google Scholar 

  38. Zhou Y, Xu J, Zhang Z, et al. The spectroscopic properties of Dy3+ and Eu3+ co-doped ZnWO4 phosphors. J Alloys Compd, 2014, 615: 624–628

    Article  Google Scholar 

  39. Li K, Xue D. Estimation of electronegativity values of elements in different valence states. J Phys Chem A, 2006, 110: 11332–11337

    Article  Google Scholar 

  40. Zhang J, Zhao T, Zou L, et al. Ultrasound-assisted precipitation synthesis of PbMoO4 and PbMoO4:Eu3+ nanocrystals and photoluminescence properties. J PhotoChem PhotoBiol A-Chem, 2016, 314: 35–41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiaYue Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Zhang, Z., Chu, Y. et al. Phase transition and photoluminescence properties of Eu3+-doped ZnMoO4 red phosphors. Sci. China Technol. Sci. 60, 1473–1479 (2017). https://doi.org/10.1007/s11431-017-9086-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9086-1

Keywords

Navigation