Advertisement

Science China Technological Sciences

, Volume 61, Issue 2, pp 184–188 | Cite as

A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35

  • KoKai Tseng
  • YaChu Yang
  • ChienChang Juan
  • TsungShune Chin
  • CheWei Tsai
  • JienWei Yeh
Article

Abstract

A light-weight high-entropy alloy (LWHEA) Al20Be20Fe10Si15Ti35 has been developed to have unique mechanical properties and oxidation resistance. One major and two minor phases are observed in the as-cast microstructure. The density of the alloy is 3.91 g cm−3, and its hardness is HV 911, which is higher than quartz. The hardness and hardness to density ratio are the highest of all light-weight alloys reported before. In addition, it has excellent oxidation resistance at 700°C and 900°C, which far exceeds that of Ti-6Al-4V. Thus, the combination of properties is promising for high-temperature applications, which require light weight, wear-resistant and oxidation-resistant components.

Keywords

high-entropy alloy light weight low density oxidation resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Committee H. Metals Handbook, Properties and Selection: Irons, Steels, and High Performance Alloys. Ohio: ASM international, Materials Park, 1990Google Scholar
  2. 2.
    Committee H. Metals Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. Ohio: ASM international, Materials Park, 1990Google Scholar
  3. 3.
    Greer A L. Confusion by design. Nature, 1993, 366: 303–304CrossRefGoogle Scholar
  4. 4.
    Swalin R A. Thermodynamics of Solids. New York: Wiley, 1972MATHGoogle Scholar
  5. 5.
    Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6: 299–303CrossRefGoogle Scholar
  6. 6.
    Yeh J W. Recent progress in high-entropy alloys. Ann Chim Sci Mat, 2006, 31: 633–648CrossRefGoogle Scholar
  7. 7.
    Hemphill M A, Yuan T, Wang G Y, et al. Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater, 2012, 60: 5723–5734CrossRefGoogle Scholar
  8. 8.
    Tang Z, Yuan T, Tsai C W, et al. Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Mater, 2015, 99: 247–258CrossRefGoogle Scholar
  9. 9.
    Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345: 1153–1158CrossRefGoogle Scholar
  10. 10.
    Shi Y, Yang B, Xie X, et al. Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corrosion Sci, 2017, 119: 33–45CrossRefGoogle Scholar
  11. 11.
    Shi Y, Yang B, Liaw P. Corrosion-resistant high-entropy alloys: A review. Metals, 2017, 7: 43CrossRefGoogle Scholar
  12. 12.
    Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1–93CrossRefGoogle Scholar
  13. 13.
    Yeh J W. Physical metallurgy of high-entropy alloys. JOM, 2015, 67: 2254–2261CrossRefGoogle Scholar
  14. 14.
    Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts. Acta Mater, 2017, 122: 448–511CrossRefGoogle Scholar
  15. 15.
    Smith W F. Structure and Properties of Engineering Alloys. New York: McGraw-Hill, 1993Google Scholar
  16. 16.
    Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys. Intermetallics, 2010, 18: 1758–1765CrossRefGoogle Scholar
  17. 17.
    Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011, 19: 698–706CrossRefGoogle Scholar
  18. 18.
    Senkov O, Isheim D, Seidman D, et al. Development of a refractory high entropy superalloy. Entropy, 2016, 18: 102CrossRefGoogle Scholar
  19. 19.
    Senkov O N, Senkova S V, Miracle D B, et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Mater Sci Eng-A, 2013, 565: 51–62CrossRefGoogle Scholar
  20. 20.
    Senkov O N, Senkova S V, Dimiduk D M, et al. Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy. J Mater Sci, 2012, 47: 6522–6534CrossRefGoogle Scholar
  21. 21.
    Stepanov N D, Yurchenko N Y, Shaysultanov D G, et al. Effect of Al on structure and mechanical properties of AlxNbTiVZr (x=0, 0.5, 1, 1.5) high entropy alloys. Mater Sci Tech, 2015, 31: 1184–1193CrossRefGoogle Scholar
  22. 22.
    Stepanov N D, Shaysultanov D G, Salishchev G A, et al. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater Lett, 2015, 142: 153–155CrossRefGoogle Scholar
  23. 23.
    Stepanov N D, Yurchenko N Y, Skibin D V, et al. Structure and mechanical properties of the AlCrxNbTiV (x=0, 0.5, 1, 1.5) high entropy alloys. J Alloys Compd, 2015, 652: 266–280CrossRefGoogle Scholar
  24. 24.
    Li R, Gao J C, Fan K. Study to microstructure and mechanical properties of mg containing high entropy alloys. MSF, 2010, 650: 265–271CrossRefGoogle Scholar
  25. 25.
    Hammond V H, Atwater M A, Darling K A, et al. Equal-channel angular extrusion of a low-density high-entropy alloy produced by highenergy cryogenic mechanical alloying. JOM, 2014, 66: 2021–2029CrossRefGoogle Scholar
  26. 26.
    Yang X, Chen S Y, Cotton J D, et al. Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium. JOM, 2014, 66: 2009–2020CrossRefGoogle Scholar
  27. 27.
    Youssef K M, Zaddach A J, Niu C, et al. A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater Res Lett, 2015, 3: 95–99CrossRefGoogle Scholar
  28. 28.
    Wikipedia. Beryllium. Retrieved 22 April 2017. Https://en.wikipedia.org/wiki/Beryllium, 2017Google Scholar
  29. 29.
    Deoboer F R, Boom R, Mattens W C, et al. Cohesion in Metals: Transition Metal Alloys. Amsterdam: Elsevier Scientific Publisher, 1988Google Scholar
  30. 30.
    Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans, 2005, 46: 2817–2829CrossRefGoogle Scholar
  31. 31.
    Dieter G E, Bacon D J. Mechanical Metallurgy. New York: McGraw- Hill, 1988Google Scholar
  32. 32.
    Zhang P, Li S X, Zhang Z F. General relationship between strength and hardness. Mater Sci Eng-A, 2011, 529: 62–73CrossRefGoogle Scholar
  33. 33.
    Ashby M F. Materials Selection in Mechanical Design. Burlington: Butterworth-Heinemann, 2011Google Scholar
  34. 34.
    Frangini S, Mignone A, de Riccardis F. Various aspects of the air oxidation behaviour of a Ti6Al4V alloy at temperatures in the range 600°C–700°C. J Mater Sci, 1994, 29: 714–720CrossRefGoogle Scholar
  35. 35.
    Greene G A, Finfrock C C. Oxidation of inconel 718 in air at high temperatures. Oxid Met, 2001, 55: 505–521CrossRefGoogle Scholar
  36. 36.
    Bai C Y, Luo Y J, Koo C H. Improvement of high temperature oxidation and corrosion resistance of superalloy IN-738LC by pack cementation. Surf Coat Tech, 2004, 183: 74–88CrossRefGoogle Scholar
  37. 37.
    Pfennig A, Fedelich B. Oxidation of single crystal PWA 1483 at 950°C in flowing air. Corros Sci, 2008, 50: 2484–2492CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • KoKai Tseng
    • 1
  • YaChu Yang
    • 1
  • ChienChang Juan
    • 1
  • TsungShune Chin
    • 1
  • CheWei Tsai
    • 1
  • JienWei Yeh
    • 1
  1. 1.Department of Materials Science and Engineering‘National’ Tsing Hua UniversityTaiwanChina

Personalised recommendations