Science China Technological Sciences

, Volume 61, Issue 2, pp 212–218 | Cite as

Butterfly distribution of Earth’s radiation belt relativistic electrons induced by dayside chorus

  • YuYue Jin
  • Chang Yang
  • YiHua He
  • Si Liu
  • QingHua Zhou
  • FuLiang XiaoEmail author


Previous theoretical studies have shown that dayside chorus can produce butterfly distribution of energetic electrons in the Earth’s radiation belts by preferentially accelerating medium pitch angle electrons, but this requires the further confirmation from high-resolution satellite observation. Here, we report correlated Van Allen Probes data on wave and particle during the 11–13 April, 2014 geomagnetic storm. We find that a butterfly pitch angle distribution of relativistic electrons is formed around the location L = 4.52, corresponding to the presence of enhanced dayside chorus. Using a Gaussian distribution fit to the observed chorus spectra, we calculate the bounce-averaged diffusion rates and solve two-dimensional Fokker-Planck equation. Numerical results demonstrate that acceleration by dayside chorus can yield the electron flux evolution both in the energy and butterfly pitch angle distribution comparable to the observation, providing a further evidence for the formation of butterfly distribution of relativistic electrons driven by very low frequency (VLF) plasma waves.


butterfly distribution relativistic electrons radiation belts wave-particle interaction dayside chorus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li L. Combined acceleration of electrons by whistler-mode and compressional ULF turbulences near the geosynchronous orbit. J Geophys Res, 2005, 110: A03203CrossRefGoogle Scholar
  2. 2.
    Summers D, Thorne R M, Xiao F. Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. J Geophys Res, 1998, 103: 20487–20500CrossRefGoogle Scholar
  3. 3.
    Summers D, Ma C, Meredith N P, et al. Model of the energization of outer-zone electrons by whistler-mode chorus during the October 9, 1990 geomagnetic storm. Geophys Res Lett, 2002, 29: 27-1–27-4Google Scholar
  4. 4.
    Horne R B. Timescale for radiation belt electron acceleration by whistler mode chorus waves. J Geophys Res, 2005, 110: A03225CrossRefGoogle Scholar
  5. 5.
    Tao X, Chan A A, Albert J M, et al. Stochastic modeling of multidimensional diffusion in the radiation belts. J Geophys Res, 2008, 113: A07212Google Scholar
  6. 6.
    Thorne R M, Li W, Ni B, et al. Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus. Nature, 2013, 504: 411–414CrossRefGoogle Scholar
  7. 7.
    Xiao F, Su Z, Zheng H, et al. Modeling of outer radiation belt electrons by multidimensional diffusion process. J Geophys Res, 2009, 114: A03201Google Scholar
  8. 8.
    Xiao F, Su Z, Zheng H, et al. Three-dimensional simulations of outer radiation belt electron dynamics including cross-diffusion terms. J Geophys Res, 2010, 115: A05216Google Scholar
  9. 9.
    Ni B, Bortnik J, Thorne R M, et al. Resonant scattering and resultant pitch angle evolution of relativistic electrons by plasmaspheric hiss. J Geophys Res Space Phys, 2013, 118: 7740–7751CrossRefGoogle Scholar
  10. 10.
    Ni B, Cao X, Zou Z, et al. Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales. J Geophys Res Space Phys, 2015, 120: 7357–7373CrossRefGoogle Scholar
  11. 11.
    Su Z, Gao Z, Zhu H, et al. Nonstorm time dropout of radiation belt electron fluxes on 24 September 2013. J Geophys Res Space Phys, 2016, 121: 6400–6416CrossRefGoogle Scholar
  12. 12.
    Wang B, Su Z, Zhang Y, et al. Nonlinear Landau resonant scattering of near equatorially mirroring radiation belt electrons by oblique EMIC waves. Geophys Res Lett, 2016, 43: 3628–3636CrossRefGoogle Scholar
  13. 13.
    Wang G, Su Z, Zheng H, et al. Nonlinear fundamental and harmonic cyclotron resonant scattering of radiation belt ultrarelativistic electrons by oblique monochromatic EMIC waves. J Geophys Res Space Phys, 2017, 108: 1928–1945Google Scholar
  14. 14.
    Horne R B, Thorne R M, Glauert S A, et al. Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves. Geophys Res Lett, 2007, 34: L17107CrossRefGoogle Scholar
  15. 15.
    Li J, Ni B, Ma Q, et al. Formation of energetic electron butterfly distributions by magnetosonic waves via Landau resonance. Geophys Res Lett, 2016, 43: 3009–3016CrossRefGoogle Scholar
  16. 16.
    Xiao F, Yang C, Su Z, et al. Wave-driven butterfly distribution of Van Allen belt relativistic electrons. Nat Commun, 2015, 6: 8590CrossRefGoogle Scholar
  17. 17.
    Ni B, Zou Z, Li X, et al. Occurrence characteristics of outer zone relativistic electron butterfly distribution: A survey of Van Allen probes REPT measurements. Geophys Res Lett, 2016, 43: 5644–5652CrossRefGoogle Scholar
  18. 18.
    Mauk B H, Fox N J, Kanekal S G, et al. Science objectives and rationale for the radiation belt storm probes mission. Space Sci Rev, 2013, 179: 3–27CrossRefGoogle Scholar
  19. 19.
    Blake J B, Carranza P A, Claudepierre S G, et al. The Magnetic electron ion spectrometer (MagEIS) instruments aboard the radiation belt storm probes (RBSP) spacecraft. Space Sci Rev, 2013, 179: 383–421CrossRefGoogle Scholar
  20. 20.
    Kletzing C A, Kurth W S, Acuna M, et al. The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP. Space Sci Rev, 2013, 179: 127–181CrossRefGoogle Scholar
  21. 21.
    Wygant J R, Bonnell J W, Goetz K, et al. The electric field and waves instruments on the radiation belt storm probes mission. Space Sci Rev, 2013, 179: 183–220CrossRefGoogle Scholar
  22. 22.
    Xiao F, Zhou Q, Zheng H, et al. Whistler instability threshold condition of energetic electrons by kappa distribution in space plasmas. J Geophys Res, 2006, 111: A08208Google Scholar
  23. 23.
    Summers D, Tang R, Thorne R M. Limit on stably trapped particle fluxes in planetary magnetospheres. J Geophys Res, 2009, 114: A10210CrossRefGoogle Scholar
  24. 24.
    He Y, Xiao F, Zhou Q, et al. Van Allen Probes observation and modeling of chorus excitation and propagation during weak geomagnetic activities. J Geophys Res Space Phys, 2015, 120: 6371–6385CrossRefGoogle Scholar
  25. 25.
    Xiao F, Thorne R M, Summers D. Instability of electromagnetic Rmode waves in a relativistic plasma. Phys Plasmas, 1998, 5: 2489–2497MathSciNetCrossRefGoogle Scholar
  26. 26.
    Li W, Thorne R M, Angelopoulos V, et al. Global distribution of whistler-mode chorus waves observed on the THEMIS spacecraft. Geophys Res Lett, 2009, 36: L09104Google Scholar
  27. 27.
    Jordanova V K, Thorne R M, Li W, et al. Excitation of whistler mode chorus from global ring current simulations. J Geophys Res, 2010, 115: A00F10Google Scholar
  28. 28.
    Yang Q W, Yang C, He Y H, et al. Magnetospheric chorus wave instability induced by relativistic Kappa-type distributions. Sci China Tech Sci, 2016, 59: 1739–1745CrossRefGoogle Scholar
  29. 29.
    Baker D N, Kanekal S G, Hoxie V C, et al. The relativistic electronproton telescope (REPT) instrument on board the radiation belt storm probes (RBSP) spacecraft: Characterization of Earth’s radiation belt high-energy particle populations. Space Sci Rev, 2013, 179: 337–381CrossRefGoogle Scholar
  30. 30.
    Tsurutani B T, Verkhoglyadova O P, Lakhina G S, et al. Properties of dayside outer zone chorus during HILDCAA events: Loss of energetic electrons. J Geophys Res, 2009, 114: A03207Google Scholar
  31. 31.
    Lyons L R, Thorne R M, Kennel C F. Pitch-angle diffusion of radiation belt electrons within the plasmasphere. J Geophys Res, 1972, 77: 3455–3474CrossRefGoogle Scholar
  32. 32.
    Vasyliunas V M. A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J Geophys Res, 1968, 73: 2839–2884CrossRefGoogle Scholar
  33. 33.
    Vi˜nas A F, Mace R L, Benson R F. Dispersion characteristics for plasma resonances of Maxwellian and Kappa distribution plasmas and their comparisons to the IMAGE/RPI observations. J Geophys Res, 2005, 110: A06202Google Scholar
  34. 34.
    Xiao F, Shen C, Wang Y, et al. Energetic electron distributions fitted with a relativistic kappa-type function at geosynchronous orbit. J Geophys Res, 2008, 113: A05203Google Scholar
  35. 35.
    Mourenas D, Artemyev A V, Agapitov O V, et al. Consequences of geomagnetic activity on energization and loss of radiation belt electrons by oblique chorus waves. J Geophys Res Space Phys, 2014, 119: 2775–2796CrossRefGoogle Scholar
  36. 36.
    Artemyev A, Agapitov O, Mourenas D, et al. Oblique whistler-mode waves in the Earth’s inner magnetosphere: Energy distribution, origins, and role in radiation belt dynamics. Space Sci Rev, 2016, 200: 261–355CrossRefGoogle Scholar
  37. 37.
    Li W, Shprits Y Y, Thorne R M. Dynamic evolution of energetic outer zone electrons due to wave-particle interactions during storms. J Geophys Res, 2007, 112: A10220Google Scholar
  38. 38.
    Shprits Y Y, Meredith N P, Thorne R M. Parameterization of radiation belt electron loss timescales due to interactions with chorus waves. Geophys Res Lett, 2007, 34: L11110CrossRefGoogle Scholar
  39. 39.
    Sheeley B W, Moldwin M B, Rassoul H K, et al. An empirical plasmasphere and trough density model: CRRES observations. J Geophys Res, 2001, 106: 25631–25641CrossRefGoogle Scholar
  40. 40.
    Yang C, Su Z, Xiao F, et al. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus. Geophys Res Lett, 2016, 43: 8339–8347CrossRefGoogle Scholar
  41. 41.
    Artemyev A V, Agapitov O V, Mourenas D, et al. Wave energy budget analysis in the Earth’s radiation belts uncovers a missing energy. Nat Commun, 2015, 6: 8143CrossRefGoogle Scholar
  42. 42.
    Reeves G D, Spence H E, Henderson M G, et al. Electron acceleration in the heart of the Van Allen radiation belts. Science, 2013, 341: 991–994CrossRefGoogle Scholar
  43. 43.
    Xiao F, Yang C, He Z, et al. Chorus acceleration of radiation belt relativistic electrons during March 2013 geomagnetic storm. J Geophys Res Space Phys, 2014, 119: 3325–3332CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • YuYue Jin
    • 1
  • Chang Yang
    • 1
  • YiHua He
    • 1
  • Si Liu
    • 1
  • QingHua Zhou
    • 1
  • FuLiang Xiao
    • 1
    Email author
  1. 1.School of Physics and Electronic SciencesChangsha University of Science and TechnologyChangshaChina

Personalised recommendations