Science China Technological Sciences

, Volume 61, Issue 2, pp 159–167 | Cite as

Exploring the design of eutectic or near-eutectic multicomponent alloys: From binary to high entropy alloys



Eutectic and near-eutectic high entropy alloys (HEAs) have recently attracted a great deal of interest because of their promising properties, such as an excellent castability and unique combination of good ductility and high strength. However, in the absence of a phase diagram, it remains a non-trivial task to find a eutectic or near-eutectic composition for a HEA system, which usually demands a tremendous amount of efforts if a trial-and-error approach is followed. In this paper, we briefly review the thermodynamics that governs the eutectic solidification in regular binary and ternary alloys, and proceed to the discussion for the design of eutectic HEAs. Based on the data reported, we then propose an improved strategy which may enable an efficient search for the eutectic or near eutectic HEA compositions.


high entropy alloys eutectic composition phase stability alloy design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wattis J A D. A Becker-Döring model of competitive nucleation. J Phys A-Math Gen, 1999, 32: 8755–8784MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Sato T, Sayama Y. Completely and partially co-operative growth of eutectics. J Cryst Growth, 1974, 22: 259–271CrossRefGoogle Scholar
  3. 3.
    Goetzinger R, Barth M, Herlach D M. Mechanism of formation of the anomalous eutectic structure in rapidly solidified Ni-Si, Co-Sb and Ni-Al-Ti alloys. Acta Mater, 1998, 46: 1647–1655CrossRefGoogle Scholar
  4. 4.
    Zhao S, Li J F, Liu L, et al. Cellular growth of lamellar eutectics in undercooled Ag-Cu alloy. Mater Charact, 2009, 60: 519–524CrossRefGoogle Scholar
  5. 5.
    Jordan R M, Hunt J D. The growth of lamellar eutectic structures in the Pb-Sn and Al-CuAl2 systems. Metall Mater Trans B, 1971, 2: 3401–3410CrossRefGoogle Scholar
  6. 6.
    Johnson D R, Chen X F, Oliver B F, et al. Processing and mechanical properties of in-situ composites from the NiAlCr and the NiAl(Cr,Mo) eutectic systems. Intermetallics, 1995, 3: 99–113CrossRefGoogle Scholar
  7. 7.
    Bei H, George E P, Kenik E A, et al. Directional solidification and microstructures of near-eutectic Cr-Cr3Si alloys. Acta Mater, 2003, 51: 6241–6252CrossRefGoogle Scholar
  8. 8.
    Bei H, George E P. Microstructures and mechanical properties of a directionally solidified NiAl-Mo eutectic alloy. Acta Mater, 2005, 53: 69–77CrossRefGoogle Scholar
  9. 9.
    Yang W, Felton L E, Messler R W. The effect of soldering process variables on the microstructure and mechanical properties of eutectic Sn-Ag/Cu solder joints. J Electron Mater, 1995, 24: 1465–1472CrossRefGoogle Scholar
  10. 10.
    Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6: 299–303CrossRefGoogle Scholar
  11. 11.
    Ma S G, Zhang S F, Qiao J W, et al. Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridgman solidification. Intermetallics, 2014, 54: 104–109CrossRefGoogle Scholar
  12. 12.
    Shun T T, Du Y C. Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy. J Alloy Compd, 2009, 479: 157–160CrossRefGoogle Scholar
  13. 13.
    Senkov O N, Senkova S V, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater, 2014, 68: 214–228CrossRefGoogle Scholar
  14. 14.
    Senkov O N, Woodward C, Miracle D B. Microstructure and properties of aluminum-containing refractory high-entropy alloys. Jom-Us, 2014, 66: 2030–2042CrossRefGoogle Scholar
  15. 15.
    Stepanov N D, Shaysultanov D G, Salishchev G A, et al. Effect of V content on microstructure and mechanical properties of the CoCr-FeMnNiVx high entropy alloys. J Alloy Compd, 2015, 628: 170–185CrossRefGoogle Scholar
  16. 16.
    Hsu C Y, Wang W R, Tang W Y, et al. Microstructure and mechanical properties of new AlCoxCrFeMo0.5 Ni high-entropy alloys. Adv Eng Mater, 2010, 12: 44–49CrossRefGoogle Scholar
  17. 17.
    Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi highentropy alloy. Acta Mater, 2013, 61: 5743–5755CrossRefGoogle Scholar
  18. 18.
    Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys. Intermetallics, 2010, 18: 1758–1765CrossRefGoogle Scholar
  19. 19.
    Wang F, Zhang Y, Chen G, et al. Tensile and compressive mechanical behavior of a CoCrCuFeNiAl0.5 high entropy alloy. Int J Mod Phys B, 2009, 23: 1254–1259CrossRefGoogle Scholar
  20. 20.
    Lu Y, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep, 2015, 4: 6200CrossRefGoogle Scholar
  21. 21.
    Guo S, Ng C, Liu C T. Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys. J Alloy Compd, 2013, 557: 77–81CrossRefGoogle Scholar
  22. 22.
    Jiang H, Zhang H, Huang T, et al. Microstructures and mechanical properties of Co2MoxNi2VWx eutectic high entropy alloys. Mater Des, 2016, 109: 539–546CrossRefGoogle Scholar
  23. 23.
    Jiang L, Lu Y, Dong Y, et al. Effects of Nb addition on structural evolution and properties of the CoFeNi2V0.5 high-entropy alloy. Appl Phys A, 2015, 119: 291–297CrossRefGoogle Scholar
  24. 24.
    He F, Wang Z, Cheng P, et al. Designing eutectic high entropy alloys of CoCrFeNiNbx. J Alloy Compd, 2016, 656: 284–289CrossRefGoogle Scholar
  25. 25.
    Lu Y, Gao X, Jiang L, et al. Directly cast bulk eutectic and neareutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater, 2017, 124: 143–150CrossRefGoogle Scholar
  26. 26.
    Jiang L, Cao Z Q, Jie J C, et al. Effect of Mo and Ni elements on microstructure evolution and mechanical properties of the CoFeNixVMoy high entropy alloys. J Alloy Compd, 2015, 649: 585–590CrossRefGoogle Scholar
  27. 27.
    Zhu J M, Fu H M, Zhang H F, et al. Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys. Mater Sci Eng-A, 2010, 527: 6975–6979CrossRefGoogle Scholar
  28. 28.
    Mishra A K, Samal S, Biswas K. Solidification behaviour of Ti-Cu-Fe-Co-Ni high entropy alloys. Trans Ind Inst Met, 2012, 65: 725–730CrossRefGoogle Scholar
  29. 29.
    He F, Wang Z, Shang X, et al. Stability of lamellar structures in CoCr-FeNiNbx eutectic high entropy alloys at elevated temperatures. Mater Des, 2016, 104: 259–264CrossRefGoogle Scholar
  30. 30.
    Guo S, Ng C, Liu C T. Sunflower-like solidification microstructure in a near-eutectic high-entropy alloy. Mater Res Lett, 2013, 1: 228–232CrossRefGoogle Scholar
  31. 31.
    Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater, 2013, 61: 4887–4897CrossRefGoogle Scholar
  32. 32.
    Wani I S, Bhattacharjee T, Sheikh S, et al. Ultrafine-grained AlCoCr-FeNi2.1 eutectic high-entropy alloy. Mater Res Lett, 2016, 4: 174–179CrossRefGoogle Scholar
  33. 33.
    Dong Y, Lu Y, Kong J, et al. Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys. J Alloy Compd, 2013, 573: 96–101CrossRefGoogle Scholar
  34. 34.
    Boyer H E, Gall T L. Metals Handbook Desk Edition. Metals Park: American Society for Metals, 1985Google Scholar
  35. 35.
    Ma S G, Zhang Y. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater Sci Eng-A, 2012, 532: 480–486CrossRefGoogle Scholar
  36. 36.
    Tong C J, Chen Y L, Yeh J W, et al. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mat Trans A, 2005, 36: 881–893CrossRefGoogle Scholar
  37. 37.
    Ivashenko A V, Titov V V, Kovshev E I. Liquid crystalline compounds: III on applicability of Schröder-Van Laar equations to liquid crystals mixtures. Mol Crysts Liquid Crysts, 1976, 33: 195–200CrossRefGoogle Scholar
  38. 38.
    Lee H-G. Chemical Thermodynamics for Metals and Materials. Place Published: Imperial College Press, 1999CrossRefGoogle Scholar
  39. 39.
    Petzow G, Effenberg G. Ternary alloys. A comprehensive compendium of evaluated constitutional data and phase diagrams. 1991, 4Google Scholar
  40. 40.
    Dinsdale A T. SGTE data for pure elements. Calphad, 1991, 15: 317–425CrossRefGoogle Scholar
  41. 41.
    Ternary Phase Diagrams for Materials Science. Place Published: Elsevier Science & Technology, 2001Google Scholar
  42. 42.
    Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects. Mater Today, 2016, 19: 349–362CrossRefGoogle Scholar
  43. 43.
    He Q F, Ye Y F, Yang Y. The configurational entropy of mixing of metastable random solid solution in complex multicomponent alloys. J Appl Phys, 2016, 120: 154902CrossRefGoogle Scholar
  44. 44.
    Wang D, Tan H, Li Y. Multiple maxima of GFA in three adjacent eutectics in Zr-Cu-Al alloy system—A metallographic way to pinpoint the best glass forming alloys. Acta Mater, 2005, 53: 2969–2979CrossRefGoogle Scholar
  45. 45.
    Ding S, Liu Y, Li Y, et al. Combinatorial development of bulk metallic glasses. Nat Mater, 2014, 13: 494–500CrossRefGoogle Scholar
  46. 46.
    Yeh J W. Alloy design strategies and future trends in high-entropy alloys. JOM, 2013, 65: 1759–1771CrossRefGoogle Scholar
  47. 47.
    Ye Y F, Liu X D, Wang S, et al. The general effect of atomic size misfit on glass formation in conventional and high-entropy alloys. Intermetallics, 2016, 78: 30–41CrossRefGoogle Scholar
  48. 48.
    Takeuchi A, Amiya K, Wada T, et al. Entropies in alloy design for high-entropy and bulk glassy alloys. Entropy, 2013, 15: 3810–3821MathSciNetCrossRefGoogle Scholar
  49. 49.
    Ye Y F, Wang Q, Lu J, et al. The generalized thermodynamic rule for phase selection in multicomponent alloys. Intermetallics, 2015, 59: 75–80CrossRefGoogle Scholar
  50. 50.
    Guo S, Liu C T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog Nat Sci-Mater Int, 2011, 21: 433–446CrossRefGoogle Scholar
  51. 51.
    Zhang Y, Lu Z P, Ma S G, et al. Guidelines in predicting phase formation of high-entropy alloys. MRC, 2014, 4: 57–62CrossRefGoogle Scholar
  52. 52.
    Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys, 2012, 132: 233–238CrossRefGoogle Scholar
  53. 53.
    Zhang Y, Peng W. Microstructural control and properties optimization of high-entrop alloys. Procedia Eng, 2012, 27: 1169–1178MathSciNetCrossRefGoogle Scholar
  54. 54.
    Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1–93CrossRefGoogle Scholar
  55. 55.
    Mansoori G A, Carnahan N F, Starling K E, et al. Equilibrium thermodynamic properties of the mixture of hard spheres. J Chem Phys, 1971, 54: 1523–1525CrossRefGoogle Scholar
  56. 56.
    Ye Y F, Liu C T, Yang Y. A geometric model for intrinsic residual strain and phase stability in high entropy alloys. Acta Mater, 2015, 94: 152–161CrossRefGoogle Scholar
  57. 57.
    Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater, 2008, 10: 534–538CrossRefGoogle Scholar
  58. 58.
    Troparevsky M C, Morris J R, Kent P R C, et al. Criteria for predicting the formation of single-phase high-entropy alloys. Phys Rev X, 2015, 5: 011041Google Scholar
  59. 59.
    Highmore R J, Greer A L. Eutectics and the formation of amorphous alloys. Nature, 1989, 339: 363–365CrossRefGoogle Scholar
  60. 60.
    Turnbull D. Under what conditions can a glass be formed? Contemp Phys, 1969, 10: 473–488CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Centre for Advanced Structural Materials, Department of Mechanical and Biomedical EngineeringCity University of Hong KongHong Kong SARChina

Personalised recommendations