Skip to main content
Log in

Optimized photoluminescence of red phosphor K2LiAlF6:Mn4+ synthesized by a cation-exchange method

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Red phosphor K2LiAlF6:Mn4+ has been synthesized by a cation-exchange method in HF solution. To optimize their optical properties, phosphors were synthesized using different reaction conditions. The K2LiAlF6:0.5%Mn4+ synthesized at 20°C for 4 h shows the highest luminescence intensity. The temperature-dependent emission intensity of the phosphor was investigated, and it was found to exhibit good thermal stability, making it a promising red phosphor candidate for warm WLEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feldmann C, Jüstel T, Ronda C R, et al. Inorganic luminescent materials: 100 years of research and application. Adv Funct Mater, 2003, 13: 511–516

    Article  Google Scholar 

  2. Lin C C, Liu R S. Advances in phosphors for light-emitting diodes. J Phys Chem Lett, 2011, 2: 1268–1277

    Article  Google Scholar 

  3. Bai X, Caputo G, Hao Z, et al. Efficient and tuneable photoluminescent boehmite hybrid nanoplates lacking metal activator centres for single-phase white LEDs. Nat Commun, 2014, 5: 5702

    Article  Google Scholar 

  4. Schubert E F, Kim J K. Solid-state light sources getting smart. Science, 2005, 308: 1274–1278

    Article  Google Scholar 

  5. Jang H S, Im W B, Lee D C, et al. Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs. J Lumin, 2007, 126: 371–377

    Article  Google Scholar 

  6. Wei L L, Lin C C, Wang Y Y, et al. Photoluminescent evolution induced by structural transformation through thermal treating in the red narrow-band phosphor K2GeF6:Mn 4+. ACS Appl Mater Inter, 2015, 7: 10656–10659

    Article  Google Scholar 

  7. Tsai Y T, Chiang C Y, Zhou W, et al. Structural ordering and charge variation induced by cation substitution in (Sr,Ca)AlSiN3:Eu phosphor. J Am Chem Soc, 2015, 137: 8936–8939

    Article  Google Scholar 

  8. Piao X, Machida K, Horikawa T, et al. Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties. Chem Mater, 2007, 19: 4592–4599

    Article  Google Scholar 

  9. Tan S T, Sun X W, Demir H V, et al. Advances in the LED materials and architectures for energy-saving solid-state lighting toward “lighting revolution”. IEEE Photonics J, 2012, 4: 613–619

    Article  Google Scholar 

  10. Adachi S, Takahashi T. Direct synthesis of K2SiF6:Mn4+ red phosphor from crushed quartz schist by wet chemical etching. Electrochem Solid-State Lett, 2009, 12: J20

    Article  Google Scholar 

  11. Takahashi T, Adachi S. Synthesis of K2SiF6:Mn4+ red phosphor from silica glasses by wet chemical etching in HF/KMnO4 solution. Electrochem Solid-State Lett, 2009, 12: J69–J71

    Article  Google Scholar 

  12. Adachi S, Takahashi T. Direct synthesis and properties of K2SiF6:Mn4+ phosphor by wet chemical etching of Si wafer. J Appl Phys, 2008, 104: 023512

    Article  Google Scholar 

  13. Xu Y K, Adachi S. Properties of Na2SiF6:Mn4+ and Na2GeF6:Mn4+ red phosphors synthesized by wet chemical etching. J Appl Phys, 2009, 105: 013525

    Article  Google Scholar 

  14. Jin Y, Fang M H, Grinberg M, et al. Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes. ACS Appl Mater Interfaces, 2016, 8: 11194–11203

    Article  Google Scholar 

  15. Lazarowska A, Mahlik S, Grinberg M, et al. Pressure effect on the zero-phonon line emission of Mn4+ in K2SiF6. J Chem Phys, 2015, 143: 134704

    Article  Google Scholar 

  16. Fang M H, Nguyen H D, Lin C C, et al. Preparation of a novel red Rb2SiF6:Mn4+ phosphor with high thermal stability through a simple one-step approach. J Mater Chem C, 2015, 3: 7277–7280

    Article  Google Scholar 

  17. Nguyen H D, Lin C C, Fang M H, et al. Synthesis of Na2SiF6:Mn4+ red phosphors for white LED applications by co-precipitation. J Mater Chem C, 2014, 2: 10268–10272

    Article  Google Scholar 

  18. Wang Z, Liu Y, Zhou Y, et al. Red-emitting phosphors Na2XF6:Mn4+ (X=Si, Ge, Ti) with high colour-purity for warm white-light-emitting diodes. RSC Adv, 2015, 5: 58136–58140

    Article  Google Scholar 

  19. Wang Z, Zhou Y, Liu Y, et al. Highly efficient red phosphor Cs2GeF6:Mn4+ for warm white light-emitting diodes. RSC Adv, 2015, 5: 82409–82414

    Article  Google Scholar 

  20. Wei L L, Lin C C, Fang M H, et al. A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M=Ge, Si) for white LED applications. J Mater Chem C, 2015, 3: 1655–1660

    Article  Google Scholar 

  21. Zhou Q, Zhou Y, Liu Y, et al. A new and efficient red phosphor for solid-state lighting: Cs2TiF6:Mn4+. J Mater Chem C, 2015, 3: 9615–9619

    Article  Google Scholar 

  22. Zhu H, Lin C C, Luo W, et al. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nat Commun, 2014, 5: 4312

    Google Scholar 

  23. Huang L, Zhu Y, Zhang X, et al. HF-free hydrothermal route for synthesis of highly efficient narrow-band red emitting phosphor K2Si1–x F6:xMn4+ for warm white light-emitting diodes. Chem Mater, 2016, 28: 1495–1502

    Article  Google Scholar 

  24. Gao X, Song Y, Liu G, et al. Narrow-band red emitting phosphor BaTiF6:Mn4+: Preparation, characterization and application for warm white LED devices. Dalton Trans, 2016, 45: 17886–17895

    Article  Google Scholar 

  25. Jiang X, Pan Y, Huang S, et al. Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6:Mn4+ for LED applications. J Mater Chem C, 2014, 2: 2301

    Article  Google Scholar 

  26. Zhou Q, Zhou Y, Liu Y, et al. A new red phosphor BaGeF6:Mn4+: Hydrothermal synthesis, photo-luminescence properties, and its application in warm white LED devices. J Mater Chem C, 2015, 3: 3055–3059

    Article  Google Scholar 

  27. Zhu Y, Huang L, Zou R, et al. Hydrothermal synthesis, morphology and photoluminescent properties of an Mn4+-doped novel red fluoride phosphor elpasolite K2LiAlF6. J Mater Chem C, 2016, 4: 5690–5695

    Article  Google Scholar 

  28. Lin C C, Meijerink A, Liu R S. Critical red components for nextgeneration white LEDs. J Phys Chem Lett, 2016, 7: 495–503

    Article  Google Scholar 

  29. Zhang X, Huang L, Pan F, et al. Highly thermally stable single-component white-emitting silicate glass for organic-resin-free white-lightemitting diodes. ACS Appl Mater Interfaces, 2014, 6: 2709–2717

    Article  Google Scholar 

  30. Zhang X, Wang J, Huang L, et al. Tunable luminescent properties and concentration-dependent, site-preferable distribution of Eu2+ ions in silicate glass for white leds applications. ACS Appl Mater Interfaces, 2015, 7: 10044–10054

    Article  Google Scholar 

  31. Shi R, Xu J, Liu G, et al. Spectroscopy and luminescence dynamics of Ce3+and Sm3+in LiYSiO4. J Phys Chem C, 2016, 120: 4529–4537

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Liu, Y., Huang, L. et al. Optimized photoluminescence of red phosphor K2LiAlF6:Mn4+ synthesized by a cation-exchange method. Sci. China Technol. Sci. 60, 1458–1464 (2017). https://doi.org/10.1007/s11431-017-9033-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9033-4

Keywords

Navigation