Skip to main content
Log in

A survey on fabrication, control, and hydrodynamic function of biomimetic robotic fish

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Understanding and replicating the locomotion principles of fish are fundamental in the development of artificial fishlike robotic systems, termed robotic fish. This paper has two objectives: (1) to review biological clues on biomechanics and hydrodynamic flow control of fish swimming and (2) to summarize design and control methods for efficient and stable swimming in robotic fishes. Our review of state-of-the-art research and future-oriented new directions indicates that fish-inspired biology and engineering interact in mutually beneficial ways. This strong interaction offers an important insight into the design and control of novel fish-inspired robots that addresses the challenge of environmental uncertainty and competing objectives; in addition, it also facilitates refinement of biological knowledge and robotic strategies for effective and efficient swimming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sfakiotakis M, Lane D M, Davies J B C. Review of fish swimming modes for aquatic locomotion. IEEE J Ocean Eng, 1999, 24: 237–252

    Article  Google Scholar 

  2. Lauder G V, Madden P G A. Learning from fish: Kinematics and experimental hydrodynamics for roboticists. Int J Automat Comput, 2006, 3: 325–335

    Article  Google Scholar 

  3. Fish F E. Advantages of natural propulsive systems. Mar Technol Soc J, 2013, 47: 37–44

    Article  Google Scholar 

  4. Lee H J, Jong Y J, Chang L M, et al. Propulsion strategy analysis of high-speed swordfish. Trans Jpn Soc Aero S Sci, 2009, 52: 11–20

    Article  Google Scholar 

  5. Tan X. Autonomous robotic fish as mobile sensor platforms: Challenges and potential solutions. Mar Technol Soc J, 2011, 45: 31–40

    Article  Google Scholar 

  6. Liang J, Wang T, Wen L. Development of a two-joint robotic fish for real-world exploration. J Field Robotics, 2011, 28: 70–79

    Article  Google Scholar 

  7. Shen F, Wei C, Cao Z, et al. Implementation of a multi-link robotic dolphin with two 3-DOF flippers. J Comput Inform Syst, 2011, 7: 2601-2607

    Google Scholar 

  8. Ryuh Y S, Yang G H, Liu J D, et al. A school of robotic fish for mariculture monitoring in the sea coast. J Bionic Eng, 2015, 12: 37–46

    Article  Google Scholar 

  9. Yu J, Wang C, Xie G. Coordination of multiple robotic fish with applications to underwater robot competition. IEEE Trans Ind Electron, 2016, 63: 1280–1288

    Article  Google Scholar 

  10. Lauder G V, Anderson E J, Tangorra J, et al. Fish biorobotics: Kinematics and hydrodynamics of self-propulsion. J Exp Biol, 2007, 210: 2767–2780

    Article  Google Scholar 

  11. Lauder G V, Drucker E G. Morphology and experimental hydrodynamics of fish fin control surfaces. IEEE J Ocean Eng, 2004, 29: 556–571

    Article  Google Scholar 

  12. Ijspeert A J. Biorobotics: Using robots to emulate and investigate agile locomotion. Science, 2014, 346: 196–203

    Article  Google Scholar 

  13. Colgate J E, Lynch K M. Mechanics and control of swimming: A review. IEEE J Ocean Eng, 2004, 29: 660–673

    Article  Google Scholar 

  14. Bandyopadhyay P R, Beal D N, Menozzi A. Biorobotic insights into how animals swim. J Exp Biol, 2008, 211: 206–214

    Article  Google Scholar 

  15. Liu H, Tang Y, Zhu Q, Xie G. Present research situations and future prospects on biomimetic robot fish. Int J Smart Sensor Intell Syst, 2014, 7: 458–480

    Google Scholar 

  16. Lauder G V. Fish locomotion: Recent advances and new directions. Annu Rev Mar Sci, 2015, 7: 521–545

    Article  Google Scholar 

  17. Raj A, Thakur A. Fish-inspired robots: Design, sensing, actuation, and autonomy—A review of research. Bioinspir Biomim, 2016, 11: 031001

    Article  Google Scholar 

  18. Alben S, Madden P G, Lauder G V. The mechanics of active fin-shape control in ray-finned fishes. J R Soc Interface, 2007, 4: 243–256

    Article  Google Scholar 

  19. Standen E M, Lauder G V. Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus: Three-dimensional kinematics during propulsion and maneuvering. J Exp Biol, 2005, 208: 2753–2763

    Article  Google Scholar 

  20. Flammang B E, Lauder G V. Functional morphology and hydrodynamics of backward swimming in bluegill sunfish, Lepomis macrochirus. Zoology, 2016, 119: 414–420

    Article  Google Scholar 

  21. Drucker E G, Lauder G V. Wake dynamics and fluid forces of turning maneuvers in sunfish. J Exp Biol, 2001, 204: 431–442

    Google Scholar 

  22. Drucker E G. Function of pectoral fins in rainbow trout: Behavioral repertoire and hydrodynamic forces. J Exp Biol, 2003, 206: 813–826

    Article  Google Scholar 

  23. Lauder G V, Madden P G A. Fish locomotion: Kinematics and hydrodynamics of flexible foil-like fins. Exp Fluids, 2007, 43: 641–653

    Article  Google Scholar 

  24. McLaughlin R L, Noakes D L. Going against the flow: An examination of the propulsive movements made by young brook trout in streams. Can J Fish Aquat Sci, 1998, 55: 853–860

    Article  Google Scholar 

  25. Wilga C D, Lauder G V. Locomotion in sturgeon: Function of the pectoral fins. J Exp Biol, 1999, 202: 2413–2432

    Google Scholar 

  26. Flammang B E, Lauder G V. Pectoral fins aid in navigation of a complex environment by bluegill sunfish under sensory deprivation conditions. J Exp Biol, 2013, 216: 3084–3089

    Article  Google Scholar 

  27. Tytell E D, Standen E M, Lauder G V. Escaping Flatland: Threedimensional kinematics and hydrodynamics of median fins in fishes. J Exp Biol, 2008, 211: 187–195

    Article  Google Scholar 

  28. Standen E M, Lauder G V. Hydrodynamic function of dorsal and anal fins in brook trout (Salvelinus fontinalis). J Exp Biol, 2007, 210: 325–339

    Article  Google Scholar 

  29. Drucker E G, Lauder G V. Locomotor function of the dorsal fin in rainbow trout: Kinematic patterns and hydrodynamic forces. J Exp Biol, 2005, 208: 4479–4494

    Article  Google Scholar 

  30. Chadwell B A, Standen E M, Lauder G V, et al. Median fin function during the escape response of bluegill sunfish (Lepomis macrochirus). I: Fin-ray orientation and movement. J Exp Biol, 2012, 215: 2869–2880

    Article  Google Scholar 

  31. Chadwell B A, Standen E M, Lauder G V, et al. Median fin function during the escape response of bluegill sunfish (Lepomis macrochirus). II: Fin-ray curvature. J Exp Biol, 2012, 215: 2881–2890

    Article  Google Scholar 

  32. Liao J C. Swimming in needlefish (Belonidae): Anguilliform locomotion with fins. J Exp Biol, 2002, 205: 2875–2884

    Google Scholar 

  33. Price S A, Friedman S T, Wainwright P C. How predation shaped fish: The impact of fin spines on body form evolution across teleosts. Proc R Soc Lond Ser B Biol Sci, 2015, 282: 1819

    Google Scholar 

  34. Lauder G V. Caudal fin locomotion in ray-finned fishes: Historical and functional analyses. Am Zool, 1989, 29: 85–102

    Article  Google Scholar 

  35. Gibb A C, Dickson K A, Lauder G V. Tail kinematics of the chub mackerel Scomber japonicus: Testing the homocercal tail model of fish propulsion. J Exp Biol, 1999, 202: 2433–2447

    Google Scholar 

  36. Flammang B E, Lauder G V. Caudal fin shape modulation and control during acceleration, braking and backing maneuvers in bluegill sunfish, Lepomis macrochirus. J Exp Biol, 2009, 212: 277–286

    Article  Google Scholar 

  37. Wilga C D, Lauder G V. Biomechanics: Hydrodynamic function of the shark’s tail. Nature, 2004, 430: 850–850

    Article  Google Scholar 

  38. Flammang B E, Lauder G V, Troolin D R, et al. Volumetric imaging of shark tail hydrodynamics reveals a three-dimensional dual-ring vortex wake structure. Proc R Soc B-Biol Sci, 2011, 278: 3670–3678

    Article  Google Scholar 

  39. Low K H, Chong C W. Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin. Bioinspir Biomim, 2010, 5: 046002

    Article  Google Scholar 

  40. Heo S, Wiguna T, Park H C, et al. Effect of an artificial caudal fin on the performance of a biomimetic fish robot propelled by piezoelectric actuators. J Bionic Eng, 2007, 4: 151–158

    Article  Google Scholar 

  41. Lauder G V, Flammang B, Alben S. Passive robotic models of propulsion by the bodies and caudal fins of fish. Integr Comp Biol, 2012, 52: 576–587

    Article  Google Scholar 

  42. Feilich K L, Lauder G V. Passive mechanical models of fish caudal fins: Effects of shape and stiffness on self-propulsion. Bioinspir Biomim, 2015, 10: 036002

    Article  Google Scholar 

  43. Esposito C J, Tangorra J L, Flammang B E, et al. A robotic fish caudal fin: Effects of stiffness and motor program on locomotor performance. J Exp Biol, 2012, 215: 56–67

    Article  Google Scholar 

  44. Zhu Q, Shoele K. Propulsion performance of a skeleton-strengthened fin. J Exp Biol, 2008, 211: 2087–2100

    Article  Google Scholar 

  45. Zhang X, Su Y, Wang Z. Numerical and experimental studies of influence of the caudal fin shape on the propulsion performance of a flapping caudal fin. J Hydrodyn Ser B, 2011, 23: 325–332

    Article  Google Scholar 

  46. Chang X, Zhang L, He X. Numerical study of the thunniform mode of fish swimming with different Reynolds number and caudal fin shape. Comp Fluids, 2012, 68: 54–70

    Article  MathSciNet  MATH  Google Scholar 

  47. Xin Z Q, Wu C J. Shape optimization of the caudal fin of the three-dimensional self-propelled swimming fish. Sci China-Phys Mech Astron, 2013, 56: 328–339

    Article  Google Scholar 

  48. Ren Z, Yang X, Wang T, et al. Hydrodynamics of a robotic fish tail: Effects of the caudal peduncle, fin ray motions and the flow speed. Bioinspir Biomim, 2016, 11: 016008

    Article  Google Scholar 

  49. Ren Z, Hu K, Wang T, et al. Investigation of fish caudal fin locomotion using a bio-inspired robotic model. Int J Adv Robotic Syst, 2016, 13: 87

    Article  Google Scholar 

  50. Wilga C D, Lauder G V. Function of the heterocercal tail in sharks: Quantitative wake dynamics during steady horizontal swimming and vertical maneuvering. J Exp Biol, 2002, 205: 2365–2374

    Google Scholar 

  51. Flammang B E. The fish tail as a derivation from axial musculoskeletal anatomy: An integrative analysis of functional morphology. Zoology, 2014, 117: 86–92

    Article  Google Scholar 

  52. Triantafyllou M S, Triantafyllou G S. An efficient swimming machine. Sci Am, 1995, 272: 64–70

    Article  Google Scholar 

  53. Yu J, Tan M, Wang S, et al. Development of a biomimetic robotic fish and its control algorithm. IEEE Trans Syst Man Cybern B, 2004, 34: 1798–1810

    Article  Google Scholar 

  54. Liu J, Hu H. Biological inspiration: From carangiform fish to multijoint robotic fish. J Bionic Eng, 2010, 7: 35–48

    Article  Google Scholar 

  55. Wen L, Wang T, Wu G, et al. Quantitative thrust efficiency of a self-propulsive robotic fish: Experimental method and hydrodynamic investigation. IEEE/ASME Trans Mechatron, 2013, 18: 1027–1038

    Article  Google Scholar 

  56. Su Z, Yu J, Tan M, et al. Implementing flexible and fast turning maneuvers of a multijoint robotic fish. IEEE/ASME Trans Mechatron, 2014, 19: 329–338

    Article  Google Scholar 

  57. Yu J, Chen S, Wu Z, et al. On a miniature free-swimming robotic fish with multiple sensors. Int J Adv Robotic Syst, 2016, 13: 62

    Article  Google Scholar 

  58. Marchese A D, Onal C D, Rus D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robotics, 2014, 1: 75–87

    Article  Google Scholar 

  59. Lauder G V. Swimming hydrodynamics: Ten questions and the technical approaches needed to resolve them. Exp Fluids, 2011, 51: 23–35

    Article  Google Scholar 

  60. Yu J, Liu L, Wang L, et al. Turning control of a multilink biomimetic robotic fish. IEEE Trans Robot, 2008, 24: 201–206

    Article  Google Scholar 

  61. Zhang S, Qian Y, Liao P, et al. Design and control of an agile robotic fish with integrative biomimetic mechanisms. IEEE/ASME Trans Mechatron, 2016, 21: 1846–1857

    Article  Google Scholar 

  62. Izraelevitz J S, Triantafyllou M S. Adding in-line motion and modelbased optimization offers exceptional force control authority in flapping foils. J Fluid Mech, 2014, 742: 5–34

    Article  Google Scholar 

  63. Lauder G V, Tangorra J L. Fish locomotion: Biology and robotics of body and fin-based movements. In: Robot Fish. Berlin: Springer, 2015. 25–49

    Chapter  Google Scholar 

  64. Liu B, Yang Y, Qin F, et al. Performance study on a novel variable area robotic fin. Mechatronics, 2015, 32: 59–66

    Article  Google Scholar 

  65. Yang Y, Xia Y, Qin F, et al. Development of a bio-inspired transformable robotic fin. Bioinspir Biomim, 2016, 11: 056010

    Article  Google Scholar 

  66. Park Y J, Huh T M, Park D, et al. Design of a variable-stiffness flapping mechanism for maximizing the thrust of a bio-inspired underwater robot. Bioinspir Biomim, 2014, 9: 036002

    Article  Google Scholar 

  67. Curet O M, Patankar N A, Lauder G V, et al. Aquatic manoeuvering with counter-propagating waves: A novel locomotive strategy. J R Soc Interface, 2011, 8: 1041–1050

    Article  Google Scholar 

  68. Hu T, Shen L, Lin L, et al. Biological inspirations, kinematics modeling, mechanism design and experiments on an undulating robotic fin inspired by Gymnarchus niloticus. Mech Mach Theory, 2009, 44: 633–645

    Article  MATH  Google Scholar 

  69. Low K H. Modelling and parametric study of modular undulating fin rays for fish robots. Mech Mach Theory, 2009, 44: 615–632

    Article  MATH  Google Scholar 

  70. MacIver M A, Fontaine E, Burdick J W. Designing future underwater vehicles: Principles and mechanisms of the weakly electric fish. IEEE J Ocean Eng, 2004, 29: 651–659

    Article  Google Scholar 

  71. Sefati S, Neveln I D, Roth E, et al. Mutually opposing forces during locomotion can eliminate the tradeoff between maneuverability and stability. Proc Natl Acad Sci USA, 2013, 110: 18798–18803

    Article  Google Scholar 

  72. Zhou C, Low K H. Better endurance and load capacity: An improved design of manta ray robot (RoMan-II). J Bionic Eng, 2010, 7: S137–S144

    Article  Google Scholar 

  73. Ma H, Cai Y, Wang Y, et al. A biomimetic cownose ray robot fish with oscillating and chordwise twisting flexible pectoral fins. Ind Robot, 2015, 42: 214–221

    Article  Google Scholar 

  74. Shang L, Wang S, Tan M, et al. Swimming locomotion modeling for biomimetic underwater vehicle with two undulating long-fins. Robotics, 2012, 30: 913–923

    Google Scholar 

  75. Moller M P, Schappi A, Buholzer P, et al. Sepios: Riding the Wave of Progress. Final Report, University of Zurich, 2014, Available at: http://sepios.org

    Google Scholar 

  76. Chen Z, Um T I, Bart-Smith H. A novel fabrication of ionic polymer–metal composite membrane actuator capable of 3-dimensional kinematic motions. Sensors Actuators A-Phys, 2011, 168: 131–139

    Article  Google Scholar 

  77. Wang Z, Hang G, Wang Y. Embedded SMA wire actuated biomimetic fin: A module for biomimetic underwater propulsion. Smart Mater Struct, 2008, 17: 2900–2912

    Google Scholar 

  78. Zhang S, Liu B, Wang L, et al. Design and implementation of a lightweight bioinspired pectoral fin driven by SMA. IEEE/ASME Trans Mechatron, 2014, 19: 1773–1785

    Article  Google Scholar 

  79. Chu W S, Lee K T, Song S H, et al. Review of biomimetic underwater robots using smart actuators. Int J Precis Eng Manuf, 2012, 13: 1281–1292

    Article  Google Scholar 

  80. Hubbard J J, Fleming M, Palmre V, et al. Monolithic IPMC fins for propulsion and maneuvering in bioinspired underwater robotics. IEEE J Ocean Eng, 2014, 39: 540–551

    Article  Google Scholar 

  81. Palmre V, Hubbard J J, Fleming M, et al. An IPMC-enabled bio-inspired bending/twisting fin for underwater applications. Smart Mater Struct, 2013, 22: 014003

    Article  Google Scholar 

  82. Morin S A, Shepherd R F, Kwok S W, et al. Camouflage and display for soft machines. Science, 2012, 337: 828–832

    Article  Google Scholar 

  83. Curet O M, Patankar N A, Lauder G V, et al. Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor. Bioinspir Biomim, 2011, 6: 026004

    Article  Google Scholar 

  84. Sfakiotakis M, Fasoulas J, Gliva R. Dynamic modeling and experimental analysis of a two-ray undulatory fin robot. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems. Hamburg, 2015. 339–346

    Google Scholar 

  85. Kahn Jr. J C, Peretz D J, Tangorra J L. Predicting propulsive forces using distributed sensors in a compliant, high DOF, robotic fin. Bioinspir Biomim, 2015, 10: 036009

    Article  Google Scholar 

  86. Sfakiotakis M, Fasoulas J, Gliva R. Model-based fin ray joint tracking control for undulatory fin mechanisms. In: Proceedings of 7th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, Brno, 2015. 158–165

    Google Scholar 

  87. Tangorra J L, Davidson S N, Hunter I W, et al. The development of a biologically inspired propulsor for unmanned underwater vehicles. IEEE J Ocean Eng, 2007, 32: 533–550

    Article  Google Scholar 

  88. Grillner S, Kozlov A, Dario P. Modeling a vertebrate motor system: Pattern generation, steering and control of body orientation. Prog Brain Res, 2007, 165: 221–234

    Article  Google Scholar 

  89. Ijspeert A J. Central pattern generators for locomotion control in animals and robots: A review. Neural Networks, 2008, 21: 642–653

    Article  Google Scholar 

  90. Yu J Z, Tan M, Chen J, et al. A survey on CPG-inspired control models and system implementation. IEEE Trans Neural Netw Learning Syst, 2014, 25: 441–456

    Article  Google Scholar 

  91. Yu J, Wang K, Tan M, et al. Design and control of an embedded vision guided robotic fish with multiple control surfaces. Scientific World J, 2014, 2014: 1–13

    Google Scholar 

  92. Arena P. A mechatronic lamprey controlled by analog circuits. In: Proceedings of IEEE MED’01 9th Mediterranean Conference on Control and Automation. Dubrovnik, 2001. 1–5

    Google Scholar 

  93. Wilbur C, Vorus W, Cao Y. A lamprey-based undulatory vehicle. In: Neurotechnology for Biomimetic Robots. Cambridge: MIT Press, 2002. 285–296

    Google Scholar 

  94. Zhao W, Yu J, Fang Y, et al. Development of multi-mode biomimetic robotic fish based on central pattern generator. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, 2006. 3891–3896

    Google Scholar 

  95. Wang M, Yu J Z, Tan M, et al. Multimodal swimming control of a robotic fish with pectoral fins using a CPG network. Chin Sci Bull, 2012, 57: 1209–1216

    Article  Google Scholar 

  96. Crespi A, Lachat D, Pasquier A, et al. Controlling swimming and crawling in a fish robot using a central pattern generator. Auton Robot, 2008, 25: 3–13

    Article  Google Scholar 

  97. Hu Y, Liang J, Wang T. Mechatronic design and locomotion control of a robotic thunniform swimmer for fast cruising. Bioinspir Biomim, 2015, 10: 026006

    Article  Google Scholar 

  98. Zhou C, Low K H. Kinematic modeling framework for biomimetic undulatory fin motion based on coupled nonlinear oscillators. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Taiwan, 2010. 934–939

    Google Scholar 

  99. Yu J, Wang M, Tan M, et al. Three-dimensional swimming. IEEE Robot Automat Mag, 2011, 18: 47–58

    Article  Google Scholar 

  100. Zhao W, Hu Y, Wang L. Construction and central pattern generatorbased control of a flipper-actuated turtle-like underwater robot. Adv Robotics, 2009, 23: 19–43

    Article  Google Scholar 

  101. Seo K, Chung S J, Slotine J J E. CPG-based control of a turtle-like underwater vehicle. Auton Robot, 2010, 28: 247–269

    Article  Google Scholar 

  102. Yu J, Ding R, Yang Q, et al. On a bio-inspired amphibious robot capable of multimodal motion. IEEE/ASME Trans Mechatron, 2012, 17: 847–856

    Article  Google Scholar 

  103. Righetti L, Ijspeert A J. Pattern generators with sensory feedback for the control of quadruped locomotion. In: Proceedings of IEEE International Conference on Robotics and Automation. Pasadena, 2008. 819–824

    Google Scholar 

  104. Wang M, Yu J, Tan M. CPG-based sensory feedback control for bioinspired multimodal swimming. Int J Adv Robotic Syst, 2014, 11: 170

    Article  Google Scholar 

  105. Yu J, Wu Z, Wang M, et al. CPG network optimization for a biomimetic robotic fish via PSO. IEEE Trans Neural Netw Learning Syst, 2016, 27: 1962–1968

    Article  MathSciNet  Google Scholar 

  106. Sun F, Xu Y, Zhou J. Active learning SVM with regularization path for image classification. Multimed Tools Appl, 2016, 75: 1427–1442

    Article  Google Scholar 

  107. Sun F, Tang J, Li H, et al. Multi-label image categorization with sparse factor representation. IEEE Trans Image Process, 2014, 23: 1028–1037

    Article  MathSciNet  Google Scholar 

  108. Wen L, Lauder G. Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device. Bioinspir Biomim, 2013, 8: 046013

    Article  Google Scholar 

  109. Wen L, Wang T M, Wu G H, et al. Hybrid undulatory kinematics of a robotic Mackerel (Scomber scombrus): Theoretical modeling and experimental investigation. Sci China Tech Sci, 2012, 55: 2941–2952

    Article  Google Scholar 

  110. Wu G, Yang Y, Zeng L. Kinematics, hydrodynamics and energetic advantages of burst-and-coast swimming of koi carps (Cyprinus carpio koi). J Exp Biol, 2007, 210: 2181–2191

    Article  Google Scholar 

  111. Wu G, Yang Y, Zeng L. Routine turning maneuvers of koi carp Cyprinus carpio koi: Effects of turning rate on kinematics and hydrodynamics. J Exp Biol, 2007, 210: 4379–4389

    Article  Google Scholar 

  112. Muller U K, Stamhuis E J, Videler J J. Hydrodynamics of unsteady fish swimming and the effects of body size: Comparing the flow fields of fish larvae and adults. J Exp Biol, 2000, 203: 193–206

    Google Scholar 

  113. Nauen J C, Lauder G V. Quantification of the wake of rainbow trout (<italic>Oncorhynchus mykiss</italic>) using three-dimensional stereoscopic digital particle image velocimetry. J Exp Biol, 2002, 205: 3271–3279

    Google Scholar 

  114. Flammang B E, Lauder G V, Troolin D R, et al. Volumetric imaging of fish locomotion. Biol Lett, 2011, 7: 695–698

    Article  Google Scholar 

  115. Kitzhofer J, Nonn T, Brücker C. Generation and visualization of volumetric PIV data fields. Exp Fluids, 2011, 51: 1471–1492

    Article  Google Scholar 

  116. Scarano F. Tomographic PIV: Principles and practice. Meas Sci Technol, 2013, 24: 012001

    Article  Google Scholar 

  117. Adhikari D, Longmire E K. Infrared tomographic PIV and 3D motion tracking system applied to aquatic predator-prey interaction. Meas Sci Technol, 2013, 24: 024011

    Article  Google Scholar 

  118. Mendelson L, Techet A H. Quantitative wake analysis of a freely swimming fish using 3D synthetic aperture PIV. Exp Fluids, 2015, 56: 135

    Article  Google Scholar 

  119. Sakakibara J, Nakagawa M, Yoshida M. Stereo-PIV study of flow around a maneuvering fish. Exp Fluids, 2004, 36: 282–293

    Article  Google Scholar 

  120. Crespi A, Karakasiliotis K, Guignard A, et al. Salamandra robotica II: An amphibious robot to study salamander-like swimming and walking gaits. IEEE Trans Robot, 2013, 29: 308–320

    Article  Google Scholar 

  121. Alben S, Witt C, Baker T V, et al. Dynamics of freely swimming flexible foils. Phys Fluids, 2012, 24: 051901–051901

    Article  MATH  Google Scholar 

  122. Wen L, Weaver J C, Lauder G V. Biomimetic shark skin: Design, fabrication and hydrodynamic function. J Exp Biol, 2014, 217: 1656–1666

    Article  Google Scholar 

  123. Hu Y, Zhao W, Xie G, et al. Development and target following of vision- based autonomous robotic fish. Robotica, 2009, 27: 1075–1089

    Article  Google Scholar 

  124. Xiong G, Lauder G V. Center of mass motion in swimming fish: Effects of speed and locomotor mode during undulatory propulsion. Zoology, 2014, 117: 269–281

    Article  Google Scholar 

  125. Wen L, Wang T M, Wu G H, et al. Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method. Bioinspir Biomim, 2012, 7: 036012

    Article  Google Scholar 

  126. Beal D N, Hover F S, Triantafyllou M S, et al. Passive propulsion in vortex wakes. J Fluid Mech, 2006, 549: 385–402

    Article  Google Scholar 

  127. Rus D, Tolley M T. Design, fabrication and control of soft robots. Nature, 2015, 521: 467–475

    Article  Google Scholar 

  128. Polygerinos P, Wang Z, Overvelde J T B, et al. Modeling of soft fiberreinforced bending actuators. IEEE Trans Robot, 2015, 31: 778–789

    Article  Google Scholar 

  129. Tangorra J, Phelan C, Esposito C, et al. Use of biorobotic models of highly deformable fins for studying the mechanics and control of fin forces in fishes. Integr Comp Biol, 2011, 51: 176–189

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JunZhi Yu or Li Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Wen, L. & Ren, Z. A survey on fabrication, control, and hydrodynamic function of biomimetic robotic fish. Sci. China Technol. Sci. 60, 1365–1380 (2017). https://doi.org/10.1007/s11431-016-9065-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-016-9065-x

Keywords

Navigation