Skip to main content
Log in

Numerical analysis on shock-cylinder interaction using immersed boundary method

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The problem of shock interaction with a rigid circular cylinder has been investigated using a compressible immersed boundary method coupled with high-order weighted-essentially non-oscillatory (WENO) scheme. First, the accuracy of the developed code is validated. Then, influences of the incident shock Mach number on the flow-field structure and dynamic drag coefficient, as well as time evolution of the flow field are studied. For different shock Mach number, the flow structure shows very different features. At a given dimensionless time, both the normalized shock detachment distance and the normalized vertical distance from the highest point of the primary reflected shock to the centerline of the cylinder decreases with increasing shock Mach number. However, location of the upper triple point varies non-monotonically with shock Mach number. For a case with given shock Mach number, the trajectory of the upper triple point and the time evolution of the normalized vertical distance from the highest point of the primary reflected shock to the centerline of the cylinder can both be predicted by linear correlation. Nevertheless, the time evolution of the normalized shock detachment distance is biased to be non-linear. Meanwhile, time evolution of force exerted on the cylinder is quite unsteady for a case with given shock Mach number and given cylinder diameter. For small shock Mach number, there exists a negative valley, and it disappears when the incident shock Mach number increases to a large value, e.g., 1.7. Furthermore, correlations to predict the occurrence of the peak drag and its value under different shock Mach numbers have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Melcher J C, Krier H, Burton R L. Burning aluminum particles inside a laboratory-scale solid rocket motor. J Propul Power, 2002, 18: 631–640

    Article  Google Scholar 

  2. Ling Y, Haselbacher A, Balachandar S. Importance of unsteady contributions to force and heating for particles in compressible flows. Int J Multiphase Flow, 2011, 37: 1026–1044

    Article  Google Scholar 

  3. Ling Y, Haselbacher A, Balachandar S. Importance of unsteady contributions to force and heating for particles in compressible flows, Part 2: Application to particle dispersal by blast waves. Int J Multiphase Flow, 2011, 37: 1013–1025

    Article  Google Scholar 

  4. Parmar M, Haselbacher A, Balachandar S. Improved drag correlation for spheres and application to shock-tube experiments. AIAA J, 2010, 48: 1273–1276

    Article  Google Scholar 

  5. Whitham G B. A new approach to problems of shock dynamics Part I: Two-dimensional problems. J Fluid Mech, 1957, 2: 145–171

    Article  MathSciNet  MATH  Google Scholar 

  6. Bryson A E, Gross R W F. Diffraction of strong shocks by cones, cylinders, and spheres. J Fluid Mech, 1961, 10: 1–16

    Article  MathSciNet  MATH  Google Scholar 

  7. Heilig W H. Diffraction of a shock wave by a cylinder. Phys Fluids, 1969, 12: 1–154

    Article  Google Scholar 

  8. Kaca J. An interferometric investigation of the diffraction of a planar shock wave over a semicircular cylinder. UTIAS Technical Note: Institute for Aerospace Studies, University of Toronto, 1988

    Google Scholar 

  9. Takayama K, Itoh K. Unsteady drag over cylinders and aerofoils in transonic shock tube flows. In: Proceedings of the the Fifteenth International Symposium on Shock Waves and Shock Tubes, Berkeley, California, July 28-August 2. Stanford: Stanford University Press, 1985

    Google Scholar 

  10. Tanno H, Itoh K, Saito T, et al. Interaction of a shock with a sphere suspended in a vertical shock tube. Shock Waves, 2003, 13: 191–200

    Article  Google Scholar 

  11. Skews B W, Bredin M S, Efune M. Drag measurement in unsteady compressible flow, Part 2: Shock wave loading of spheres and cones. R & D J South Afri Inst Mech Eng, 2007, 23: 13–19

    Google Scholar 

  12. Yang J Y, Liu Y, Lomax H. Computation of shock wave reflection by circular cylinders. AIAA J, 1987, 25: 683–689

    Article  Google Scholar 

  13. Drikakis D, Ofengeim D, Timofeev E, et al. Computation of non-stationary shock-wave/cylinder interaction using adaptive-grid methods. J Fluids Struct, 1997, 11: 665–692

    Article  Google Scholar 

  14. Zóltak J, Drikakis D. Hybrid upwind methods for the simulation of unsteady shock-wave diffraction over a cylinder. Comp Methods Appl Mech Eng, 1998, 162: 165–185

    Article  MATH  Google Scholar 

  15. Bagabir A, Drikakis D. Numerical experiments using high-resolution schemes for unsteady, inviscid, compressible flows. Comp Methods Appl Mech Eng, 2004, 193: 4675–4705

    Article  MathSciNet  MATH  Google Scholar 

  16. Ripley R C, Lien F S, Yovanovich M M. Numerical simulation of shock diffraction on unstructured meshes. Comp Fluids, 2006, 35: 1420–1431

    Article  MATH  Google Scholar 

  17. Parmar M, Andreas H, Balachandar S. Prediction and modeling of shock-particle interaction. In: 47th AIAA AeroSpace Sciences Meeting Including, the New Horizons Forum and Aerospace Exposition. Orlando, 2009. 2009–1124

    Google Scholar 

  18. Sun M, Saito T, Takayama K, et al. Unsteady drag on a sphere by shock wave loading. Shock Waves, 2005, 14: 3–9

    Article  MATH  Google Scholar 

  19. Peskin C S. Flow patterns around heart valves: A numerical method. J Comp Phys, 1972, 10: 252–271

    Article  MATH  Google Scholar 

  20. Mittal R, Iaccarino G. Immersed boundary methods. Annu Rev Fluid Mech, 2005, 37: 239–261

    Article  MathSciNet  MATH  Google Scholar 

  21. Scott M, Michael A, Marsha B. Implicit approaches for moving boundaries in a 3-d cartesian method. In: 41st Aerospace Sciences Meeting and Exhibit. Reno, 2003. 2003–1119

    Google Scholar 

  22. Robert E H, Brandon W. Ventus: An overset adaptive cartesian simulation framework for moving boundary problems. In: 21st AIAA Computational Fluid Dynamics Conference. San Diego, 2013. 2009–1124

    Google Scholar 

  23. Jiang X, Chen Z, Li H. Numerical investigation on the interaction of cylinder and shockwave based on the immersed boundary method. Mod Phys Lett B, 2009, 23: 317–320

    Article  MATH  Google Scholar 

  24. Ji H, Lien F S, Yee E. Numerical simulation of detonation using an adaptive Cartesian cut-cell method combined with a cell-merging technique. Comp Fluids, 2010, 39: 1041–1057

    Article  MathSciNet  MATH  Google Scholar 

  25. Chaudhuri A, Hadjadj A, Chinnayya A. On the use of immersed boundary methods for shock/obstacle interactions. J Comp Phys, 2011, 230: 1731–1748

    Article  MathSciNet  MATH  Google Scholar 

  26. Glazer E, Sadot O, Hadjadj A, et al. Velocity scaling of a shock wave reflected off a circular cylinder. Phys Rev E, 2011, 83: 066317

    Article  Google Scholar 

  27. Yoo C S, Im H G. Characteristic boundary conditions for simulations of compressible reacting flows with multi-dimensional, viscous and reaction effects. Combust Theory Model, 2007, 11: 259–286

    Article  MathSciNet  MATH  Google Scholar 

  28. Tsai I N, Huang J C, Tsai S S, et al. Unsteady relativistic shock-wave diffraction by cylinders and spheres. Phys Rev E, 2012, 85: 026317

    Article  Google Scholar 

  29. Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes. J Comp Phys, 1996, 126: 202–228

    Article  MathSciNet  MATH  Google Scholar 

  30. Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J Comp Phys, 1988, 77: 439–471

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianRen Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, K., Luo, Y., Jin, T. et al. Numerical analysis on shock-cylinder interaction using immersed boundary method. Sci. China Technol. Sci. 60, 1423–1432 (2017). https://doi.org/10.1007/s11431-016-9037-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-016-9037-2

Keywords

Navigation