Skip to main content
Log in

In-situ TEM study of the dynamic behavior of the graphene-metal interface evolution under Joule heating

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The dynamic behavior of the interface between few layer graphene (FLG) and tungsten metal tips under Joule heating has been studied by in-situ transmission electron microscopy (TEM) method. High-resolution and real-time observations show the tungsten tip ‘swallow’ carbon atoms of the FLG and ‘spit’ graphite shells at its surface. The tip was carbonized to tungsten carbide (WC, W2C and WC x ) after this process. A carbon diffusion mechanism has been proposed based on the diffusion of carbon atoms through the tungsten tip and separation from the surface of the tip. After Joule heating, the initial FLG-metal mechanical contact was transformed to FLG-WC x -W contact, which results in significant improvement on electrical conductivity at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    Article  Google Scholar 

  2. Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438: 197–200

    Article  Google Scholar 

  3. Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6: 183–191

    Article  Google Scholar 

  4. Zeng M, Wang H, Zhao C, et al. 3D graphene foam-supported cobalt phosphate and borate electrocatalysts for high-efficiency water oxidation. Sci Bull, 2015, 60: 1426–1433

    Article  Google Scholar 

  5. Robinson J A, La Bella M, Zhu M, et al. Contacting graphene. Appl Phys Lett, 2011, 98: 053103

    Article  Google Scholar 

  6. Xia F, Perebeinos V, Lin Y M, et al. The origins and limits of metal- graphene junction resistance. Nature Nanotechnol, 2011, 6: 179–184

    Article  Google Scholar 

  7. Moon J S, Antcliffe M, Seo H C, et al. Ultra-low resistance ohmic contacts in graphene field effect transistors. Appl Phys Lett, 2012, 100: 203512

    Article  Google Scholar 

  8. Venugopal A, Colombo L, Vogel E M. Contact resistance in few and multilayer graphene devices. Appl Phys Lett, 2010, 96: 013512

    Article  Google Scholar 

  9. Russo S, Craciun M F, Yamamoto M, et al. Contact resistance in graphene-based devices. Physica E, 2010, 42: 677–679

    Article  Google Scholar 

  10. Grosse K L, Bae M H, Lian F, et al. Nanoscale Joule heating, peltier cooling and current crowding at graphene-metal contacts. Nat Nanotechnol, 2011, 6: 287–290

    Article  Google Scholar 

  11. LeeEduardo J H, Balasubramanian K, Weitz R T, et al. Contact and edge effects in graphene devices. Nat Nanotechnol, 2008, 3: 486–490

    Article  Google Scholar 

  12. Krstic V, Obergfell D, Hansel S, et al. Graphene-metal interface: Two-terminal resistance of low-mobility graphene in high magnetic fields. Nano Lett, 2008, 8: 1700–1703

    Article  Google Scholar 

  13. Lin Y M, Valdes-Garcia A, Han S J, et al. Wafer-scale graphene integrated circuit. Science, 2011, 332: 1294–1297

    Article  Google Scholar 

  14. Wu Y, Lin Y M, Bol A A, et al. High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 2011, 472: 74–78

    Article  Google Scholar 

  15. Pince E, Kocabas C. Investigation of high frequency performance limit of graphene field effect transistors. Appl Phys Lett, 2010, 97: 173106

    Article  Google Scholar 

  16. Hsu A, Wang H, Kim K K, et al. Impact of graphene interface quality on contact resistance and rf device performance. IEEE Electron Device Lett, 2011, 32: 1008–1010

    Article  Google Scholar 

  17. Nagashio K, Nishimura T, Kita K, et al. Metal/graphene contact as a performance killer of ultra-high mobility graphene analysis of intrinsic mobility and contact resistance. In: Electron Devices Meeting (IEDM), Baltimore, MD, 2009. 1–4

    Google Scholar 

  18. Balci O, Kocabas C. Rapid thermal annealing of graphene-metal contact. Appl Phys Lett, 2012, 101: 243105

    Article  Google Scholar 

  19. Cassell A M, Raymakers J A, Kong J, et al. Large scale CVD synthesis of single-walled carbon nanotubes. J Phys Chem B, 1999, 103: 6484–6492

    Article  Google Scholar 

  20. Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324: 1312–1314

    Article  Google Scholar 

  21. Yang F, Wang X, Zhang D, et al. Chirality-specific growth of single- walled carbon nanotubes on solid alloy catalysts. Nature, 2014, 510: 522–524

    Article  Google Scholar 

  22. Yang F, Wang X, Zhang D, et al. Growing zigzag (16,0) carbon nanotubes with structure-defined catalysts. J Am Chem Soc, 2015, 137: 8688–8691

    Article  Google Scholar 

  23. Xu Z, Bando Y, Wang W, et al. Real-time in situ HRTEM-resolved resistance switching of Ag2S nanoscale ionic conductor. ACS Nano, 2010, 4: 2515–2522

    Article  Google Scholar 

  24. Jiake W, Zhi X, Hao W, et al. In-situ tem imaging of the anisotropic etching of graphene by metal nanoparticles. Nanotechnology, 2014, 25: 465709

    Article  Google Scholar 

  25. Wang L F, Xu Z, Yang S Z, et al. Real-time in sit TEM studying the fading mechnism of tin dioxide nanowire electrodes in lithium ion batteries. Sci China Tech Sci, 2013, 56: 2630–2635

    Article  MathSciNet  Google Scholar 

  26. Huang J Y. In situ observation of quasimelting of diamond and reversible graphite-diamond phase transformations. Nano Lett, 2007, 7: 2335–2340

    Article  Google Scholar 

  27. Luthin J, Linsmeier C. Carbon films and carbide formation on tungsten. Surf Sci, 2000, 454–456: 78–82

    Article  Google Scholar 

  28. Wang M S, Golberg D, Bando Y. Interface dynamic behavior between a carbon nanotube and metal electrode. Adv Mat, 2010, 22: 93–98

    Article  Google Scholar 

  29. Andrews M R. Production and characteristics of the carbides of tungsten. J Phys Chem, 1922, 27: 270–283

    Article  Google Scholar 

  30. Andrews M R. Diffusion of carbon through tungsten and tungsten carbide. J Phys Chem, 1924, 29: 462–472

    Article  Google Scholar 

  31. Tersoff J. Enhanced solubility of impurities and enhanced diffusion near crystal surfaces. Phys Rev Lett, 1995, 74: 5080–5083

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi Xu or XueDong Bai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Xu, Z., Wang, H. et al. In-situ TEM study of the dynamic behavior of the graphene-metal interface evolution under Joule heating. Sci. China Technol. Sci. 59, 1080–1084 (2016). https://doi.org/10.1007/s11431-016-6084-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-016-6084-4

Keywords

Navigation