Skip to main content
Log in

Composition dependence of phase structure and electrical properties of (1−y)Bi1−x Nd x FeO3−y BiScO3 ceramics

  • Article
  • Special Topic: Functional Materials
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this work, we have studied a new lead-free ceramic of (1−y)Bi1−x Nd x FeO3-y BiScO3 (0.05≤x≤0.15 and 0.05≤y≤0.15) prepared by a conventional solid-state method, and the influences of Nd and Sc content on their phase structure and electrical properties were investigated in detail. The ceramics with 0.05≤x≤0.10 and 0.05≤y≤0.15 belong to an R3c phase, and the rhombohedral-like and orthorhombic multiphase coexistence is established in the composition range of 0.125≤x≤0.15 and y=0. The electrical properties of the ceramics can be enhanced by modifying x and y values. The highest piezoelectric coefficient (d 33~51 pC/N) is obtained in the ceramics with x=0.075 and y=0.125, which is superior to that of a pure BiFeO3 ceramic. In addition, a lowest dielectric loss (tan δ~0.095%, f=100 kHz) is shown in the ceramics with x=0.15 and y=0 due to the involvement of low defect concentrations, and the improved thermal stability of piezoelectricity at 20–600°C is possessed in the ceramics. We believe that the ceramics can play a meaningful role in the high-temperature lead-free piezoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fieebig M, Lottermoser T, Frohlich D, et al. Observation of coupled magnetic and electric domains. Nature, 2002, 419: 818–820

    Article  Google Scholar 

  2. Eerenstein W, Mathur N D, Scott J F. Multiferroic and magnetoelectric materials. Nature, 2009, 442: 759–765

    Article  Google Scholar 

  3. Fiebig M. Revival of the magnetoelectric effect. J Phys D, 2005, 38: R123

    Article  Google Scholar 

  4. Tabares-Munoz C, Rivera J P, Monnier A, et al. Measurement of the quadratic magnetoelectric effect on single crystalline BiFeO3. Jpn J Appl Phys, 1985, 24: 1051–1053

    Article  Google Scholar 

  5. Sahu J R, Rao C N R. Beneficial modification of the properties of multiferroic BiFeO3 by cation substitution. Solid State Sci, 2007, 9: 950–954

    Article  Google Scholar 

  6. Khomchenko V A, Kiselev D A, SeleZneva E K, et al. Weak ferromagnetism in diamagnetically-doped Bi1–x AxFeO3 (A=Ca, Sr, Pn, Ba) multiferroics. Mater Lett, 2008, 62, 1927–1929

    Article  Google Scholar 

  7. Uniyal P, Yadav K L. Study of dielectric, magnetic and ferroelectric properties in Bi1-x GdxFeO3. Mater Lett, 2008, 62: 2858–2861

    Article  Google Scholar 

  8. Moreau J M, Michel C, Gerson R, et al. Ferroelectric BiFeO3 X-ray and neutron study. J Phys Chem Solid, 1971, 32: 1315–1320

    Article  Google Scholar 

  9. Catalan G, Sott J F. Physics and applications of bismuth ferrite. Adv Mater, 2004, 21: 2463–2485

    Article  Google Scholar 

  10. Wang J, Neaton J B, Zheng H, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003, 299: 1719–1722

    Article  Google Scholar 

  11. Peng Z H, Chen Q, Wu J G, et al. Dielectric and piezoelectric properties of Sb5+ doped (NaBi)0.38(LiCe)0.05-0.14Bi2Nb2O9 ceramics. J Alloys Compd, 2011, 509: 8483–8486

    Article  Google Scholar 

  12. Takeuchi T, Tani T, Saito Y. Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with a preferred orientation processed by the reactive templated grain growth method. Jpn J Appl Phys, 1999, 38: 5553–5556

    Article  Google Scholar 

  13. Wu J G, Wang J, Xiao D Q, et al. A method to improve electrical properties of BiFeO3 thin films. ACS Appl Mater Interfaces, 2012, 4: 1182–1185

    Article  Google Scholar 

  14. Wu J G, Wang J, Xiao D Q, et al. Migration kinetics of oxygen vacancies in mn-modified BiFeO3 thin films. ACS Appl Mater Interfaces, 2011, 3: 2504–1511

    Article  Google Scholar 

  15. Zheng T, Wu J G. Enhanced piezoelectric activity in high-temperature Bi1–x–ySmxLayFeO3 lead-free ceramics. J Mater Chem C, 2015, 3: 3684–3693

    Article  Google Scholar 

  16. Yu B F, Li M Y, Wang J, et al. Enhanced electrical properties in multiferroic BiFeO3 ceramics co-doped by La3+ and V5+. J Phys D: Appl Phys, 2008, 41: 185401

    Article  Google Scholar 

  17. Wang T H, Tu C S, Chen H Y, et al. Magnetoelectric coupling and phase transition in BiFeO3 and (Bi-FeO3)0.95(BaTiO3)0.05 ceramics. J Appl Phys, 2011, 1089: 044101

    Article  Google Scholar 

  18. Zeches R J, Rossell M D, Zhang J X, et al. A strain-driven morphotropic phase boundary in BiFeO3. Science, 2009, 326: 977–980

    Article  Google Scholar 

  19. Kumari S, Ortega N, Kumar A, et al. Dielectric anomalies due to grain boundary conduction in chemically substituted BiFeO3. J Appl Phys, 2015, 117: 114102

    Article  Google Scholar 

  20. Pandit P, Satapathy S, Gupta P K, et al. Effect of coalesce doping of Nd and La on structure, dielectric, and magnetic properties of BiFeO3. J Appl Phys, 2009, 106: 114105

    Article  Google Scholar 

  21. Wu J G, Qian S, Wang J, et al. A giant polarization value of Zn and Mn co-modified bismuth ferrite thin films. Appl Phys Lett, 2013, 102: 052904

    Article  Google Scholar 

  22. Wu J G, Xiao D Q, Zhu J G. Effect of (Bi, La)(Fe, Zn)O3 thickness on the microstructure and multiferroic properties of BiFeO3 thin films. J Appl Phys, 2012, 112: 094109

    Article  Google Scholar 

  23. Zhao T, Scholl A, Zavaliche F, et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat Mater, 2008, 7: 478–482

    Article  Google Scholar 

  24. Qi H Y, Qi Y J, Xiao M. Leakage mechanisms in rare-earth (La, Nd) doped Bi4Ti3O12 ferroelectric ceramics. J Mater Sci Mater Electron, 2014, 25: 1325–1330

    Article  Google Scholar 

  25. Sati P C, Kumar M, Chhoker S, et al. Influence of Eu substitution on structural, magnetic, optical and dielectric properties of BiFeO3 multiferroic ceramics. Ceram Int, 2015, 41: 2389–2398

    Article  Google Scholar 

  26. Sharma P, Varshney D, Satapathy S, et al. Effect of Pr substitution on structural and electrical properties of BiFeO3 ceramics. Mater Chem Phys, 2014, 143: 629–236

    Article  Google Scholar 

  27. Godara P, Agarwal A, Ahlawat N, et al. Crystal structure refinement, dielectric nd magnetic properties of Sm modified BiFeO3 multiferroic. J Mol Struct, 2015, 1097: 207–213

    Article  Google Scholar 

  28. Wang C A, Pang H Z, Zhang A H, et al. Enhanced ferroelectric polarization and magnetization in BiFe1–x ScxO3 ceramics. Mater Res Bull, 2015, 70: 595–599

    Article  Google Scholar 

  29. Chaudhari Y, Mahajan C M, Singh A, et al. Multiferroic properties of nanocrystalline BiFe1–x NixO3 (x=0.0–0.15) perovskite ceramics. J Magn Magn Mater, 2015, 395: 329–335

    Article  Google Scholar 

  30. Pattanayak S, Choudhary R N P. Systhesis, electrical and magnetic characteristics of Nd-modified BiFeO3. Ceram Int, 2015, 41: 9403–9410

    Article  Google Scholar 

  31. Rao T D, Asthana S, Niranjan M K. Observation of coexistence of ferroelectric and antiferroelectric phases in Sc substitution BiFeO3. J Alloys Compd, 2015, 642: 192–199

    Article  Google Scholar 

  32. Hernandez N, Gonzalez-Gonzalez V A, Dzul-Bautista B I, et al. Nd and Sc co-doped BiFeO3 nanopowders displaying enhanced ferromagnetism at room temperature. J. Alloys Compd, 2015, 638: 282–288

    Article  Google Scholar 

  33. Lv J, Wu J G. Enhanced electrical properties of quenched (1–x)Bi1y SmyFeO3–x BiScO3 lead-free ceramics. J Phys Chem C, 2015, 119: 21105–21115

    Article  Google Scholar 

  34. Singh K, Jang H M, Ryu S, et al. Polarized raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry. Appl Phys Lett, 2006, 88: 042907

    Article  Google Scholar 

  35. Hermet P, Goffinet M, Kreisel J, et al. Raman and infrared spectra of multiferroic bismuth ferrite from first principles. Phys Rev B Condens Matter Mater Phys, 2007, 75: 220102

    Article  Google Scholar 

  36. Coondoo I, Panwar N, Bdikin I, et al. Structural, morphological and piezoresponse studies of Pr and Sc co-substituted BiFeO3 ceramics. J Phys D Appl Phys, 2012, 45: 055302

    Article  Google Scholar 

  37. Verma V. Structural, electrical and magnetic properties of rare-earth and transition element co-doped bismuth ferrites. J Alloys Compd, 2015, 641: 205–209

    Article  Google Scholar 

  38. Valant M, Axelsson A K, Alford N. Peculiarities of a solidstate synthesis of multiferroic polycrystalline BiFeO3. Chem Mater, 2007, 19: 5431–5436

    Article  Google Scholar 

  39. Sun C, Wang Y P, Yang Y, et al. Multiferroic properties of Bi1–x DyxFeO3 (x=0–0.2) ceramics at various temperatures. Mater Lett, 2012, 72: 160–163

    Article  Google Scholar 

  40. Ke S, Lin P, Zeng X, et al. Tuning of dielectric and ferroelectric properties in single phase BiFeO3 ceramics with controlled Fe2+/Fe3+ ratio. Ceram Int, 2014, 40: 5263–5268

    Article  Google Scholar 

  41. Wu J G, Xiao D Q, Zhu J G. Effect of La and Co-doping on microstructure and electrical properties of BiFeO3 thin films. Chin Sci Bull, 2014, 59: 5205–5211

    Article  Google Scholar 

  42. Hussain A, Xu X J, Yuan G L, et al. The development of BiFeO3-based ceramics. Chin Sci Bull, 2014, 56: 5161–5169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Tao or JiaGang Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, H., Wu, J. Composition dependence of phase structure and electrical properties of (1−y)Bi1−x Nd x FeO3−y BiScO3 ceramics. Sci. China Technol. Sci. 59, 1029–1035 (2016). https://doi.org/10.1007/s11431-016-6051-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-016-6051-0

Keywords

Navigation