Skip to main content
Log in

Cold plasma redistribution throughout geospace

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The redistribution of the electrically charged cold plasma of ionospheric origin involves the equatorial, low, mid, auroral, and polar-latitude regions in a multi-step, system-wide process linking the regions of geospace. Observations with ground and space-based instruments characterize the geospace plume-regularly occurring channels of enhanced plasma density flowing at both ionospheric and magnetospheric altitudes. Convection in the SAPS channel transports the eroded material to the noontime cusp in the ionosphere and to the dayside magnetopause at high altitudes. As the fluxes of cold plume plasma traverse the cusp and enter the polar cap, they form the polar tongue of ionization. At the cusp the plume plasma provides a rich source of heavy ions for the magnetospheric injection and acceleration via the mechanisms operative on those field lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Freeman J W. Heavy ion circulation in the Earth’s magnetosphere. Geophys Res Lett, 1977, 4: 195

    Article  Google Scholar 

  2. Elphic R C. The fate of the outer plasmasphere. Geophys Res Lett, 1997 24, 365

    Article  Google Scholar 

  3. Sandel, B R, King R A, Forrester W T, et al. Initial results from the IMAGE extreme ultraviolet imager. Geophys Res Lett, 2001, 28: 1439

    Article  Google Scholar 

  4. Chen A J, Grebowsky J M. Plasma tail interpretations of pronounced detached plasma regions measured by OGO 5. J Geophys Res, 1974, 79: 3851–3855

    Article  Google Scholar 

  5. Mendillo M. A study of the relationship between geomagnetic storms and ionospheric disturbance at mid-latitudes. Planet Space Sci, 1973, 21: 349

    Article  Google Scholar 

  6. Foster J C. Storm-time plasma transport at middle and high latitudes. J Geophys Res, 1993, 98: 1675–1689

    Article  Google Scholar 

  7. Su Y J, Thomsen M F, Borovsky J E, et al. A linkage between polar patches and plasmaspheric drainage plumes. Geophys Res Lett, 2001, 28: 111–113

    Article  Google Scholar 

  8. Carpenter D L, Lemaire J. The plasmasphere boundary layer. Ann Geophys, 2004, 22: 4291

    Article  Google Scholar 

  9. Mendillo M. Storms in the ionosphere: Patterns and processes for total electron content. Rev Geophys, 2006, 44: RG4001

    Article  Google Scholar 

  10. Vo H B, Foster J C. A quantitative study of ionospheric density gradients at mid-latitudes. J Geophys Res, 2001, 106: 21555–1563

    Article  Google Scholar 

  11. Foster J C, Coster A J, Erickson P J, et al. Redistribution of the stormtime ionosphere and the formation of the plasmaspheric bulge. In: Burch J, Schultz M, eds. New Perspectives From Imaging. Washington DC: AGU Press, 2005. 277–289

    Google Scholar 

  12. Tsurutani B T. Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields. J Geophys Res, 2004, 109: A08302

    Article  Google Scholar 

  13. Chi P J, Russell C T, Foster J C, et al. Density enhancement in the plasmasphere-ionosphere plasma during the 2003 Halloween magnetic storm: Observations along the 265th meridian in North America. Geophys Res Lett, 2005, 32: L03S07

    Article  Google Scholar 

  14. Foster J C, Vo H B. Average characteristics and activity dependence of the subauroral polarization stream. J Geophys Res, 2002, 107, doi: 10.1029/2002JA009409

  15. Goldstein J, Sandel B R. The global pattern of evolution of plasmaspheric drainage plumes. In: Burch J, Schultz M, eds. New Perspectives From Imaging. Washington DC: AGU Press, 2005. 1–22

    Google Scholar 

  16. Foster J C, Rich F J. Prompt midlatitude electric field effects during severe geomagnetic storms. J Geophys Res, 1978, 103: 26367

    Article  Google Scholar 

  17. Foster J C, Burke W J. SAPS: A new characterization for sub-auroral electric fields. EOS, 2002, 83: 393–394

    Article  Google Scholar 

  18. Foster J C, Erickson P J, Coster A J, et al. Ionospheric signatures of plasmaspheric tails. Geophys Res Lett, 2002, 29, doi: 10.1029/2002GL-015067

    Google Scholar 

  19. Foster J C, Coster A J, Erickson P J, et al. Stormtime observations of the flux of plasmaspheric ions to the dayside cusp/magnetopause. Geophys Res Lett, 2004, 31: L08809

    Google Scholar 

  20. Coster A J, Foster J, Erickson P. Monitoring the ionosphere with GPS: Space weather. GPS World, 2003, 14: 42–49

    Google Scholar 

  21. Tsyganenko N A. A model of the near magnetosphere with a dawn-dusk asymmetry: 1. Mathematical structure. J Geophys Res, 2002, 107, doi: 10.1029/2001JA00219

    Google Scholar 

  22. Foster J C, Rideout W. Storm enhanced density: Magnetic conjugacy effects. Ann Geophys, 2007, 25: 1791–1799

    Article  Google Scholar 

  23. Foster J C, Erickson P J, Coster A J, et al. Stormtime observations of plasmasphere erosion flux in the magnetosphere and ionosphere. Geophys Res Lett, 2014, 41: 762–768

    Article  Google Scholar 

  24. Foster J C, Coster A J, Erickson P J, et al. Multiradar observations of the polar tongue of ionization. J Geophy Res, 2005, 110: A09S31

    Article  Google Scholar 

  25. Walsh B M, Sibeck D G, Nishimura Y, e al. Statistical analysis of the plasmaspheric plume at the magnetopause. J Geophys Res Space Physics, 2013, 118, doi:10.1002/jgra.50458

  26. Whitteker J H, Brace L H, Maier E J, et al. Snapshot of polar ionosphere. Planet Sp Sci, 1976, 24: 25–32

    Article  Google Scholar 

  27. Thomas E G, Baker J B H, Ruohoniemi J M, et al. Direct observations of the role of convection electric field in the formation of a polar tongue of ionization from storm enhanced density. J Geophys Res Space Physics, 2013, 118: 1180–1189

    Article  Google Scholar 

  28. Weber E J, Buchau J, Moore J G, et al. F layer ionization patches in the polar cap. J Geophys Res, 1984, 89: 1683

    Article  Google Scholar 

  29. Foster J C, Rideout W, Sandel B, et al. On the relationship of SAPS to storm enhanced density. J Atmos Space Terr Phys, 2007, 69: 303–313

    Article  Google Scholar 

  30. Walsh B M, Foster J C, Erickson P J, et al. Simultaneous ground and space-based observations of the plasmaspheric plume and magnetospheric reconnection. Science, 2014, 6175: 1122–1125

    Article  Google Scholar 

  31. Zhang Q H, Zhang B C, Lockwood M, et al. Direct observations of the evolution of polar cap ionization patches. Science, 2013, 339: 1597–1600

    Article  Google Scholar 

  32. Foster J C, Erickson P J, Baker D N, et al. Prompt energization of relativistic and highly relativistic electrons during substorm intervals: Van Allen Probes observations. Geophys Res Lett, 2013, 41: 20–25

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Foster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foster, J.C. Cold plasma redistribution throughout geospace. Sci. China Technol. Sci. 59, 1340–1345 (2016). https://doi.org/10.1007/s11431-016-6047-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-016-6047-9

Keywords

Navigation