Skip to main content
Log in

A novel memristive neural network with hidden attractors and its circuitry implementation

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Neural networks have been applied in various fields from signal processing, pattern recognition, associative memory to artificial intelligence. Recently, nanoscale memristor has renewed interest in experimental realization of neural network. A neural network with a memristive synaptic weight is studied in this work. Dynamical properties of the proposed neural network are investigated through phase portraits, Poincaré map, and Lyapunov exponents. Interestingly, the memristive neural network can generate hyperchaotic attractors without the presence of equilibrium points. Moreover, circuital implementation of such memristive neural network is presented to show its feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Haykin S. Neural Network: A Comprehensive Foundation. New Jersey: Prentice Hall, 1998

    MATH  Google Scholar 

  2. Bishop C M. Neural Network for Pattern Recognition. Oxford: Clarendon Press, 1995

    Google Scholar 

  3. Yu W. Nonlinear system identification using discrete-time recurrent neural network with stable learning algorithms. Inf Sci, 2004, 158: 131–147

    Article  MATH  Google Scholar 

  4. Rubio J, Yu W. Nonlinear system identification with recurrent neural networks and dead-zone Kalman filter algorithm. Neurocomputing, 2007, 70: 2460–2466

    Article  Google Scholar 

  5. Wang Q, Zheng Y, Ma J. Cooperative dynamics in neuronal networks. Chaos Solitons Fractals, 2013, 56: 19–27

    Article  Google Scholar 

  6. Qin H X, Ma J, Jin W Y, et al. Dynamics of electric activities in neuron and neurons of network induced by autapses. Sci China Tech Sci, 2014, 57: 936–946

    Article  Google Scholar 

  7. Gu H G, Chen S G. Potassium-induced bifurcations and chaos of firing patterns observed from biological experiment on a neural pacemaker. Sci China Tech Sci, 2014, 57: 864–871

    Article  Google Scholar 

  8. Qin H, Ma J, Wang C, et al. Autapse-induced target wave, spiral wave in regular network of neurons. Sci China-Phys Mech Astrom, 2014, 57: 1918–1926

    Article  Google Scholar 

  9. Wang H X, Wang Q Y, Zheng Y H. Bifurcation analysis for Hindmarsh-Rose neuronal model with time-delayed feedback control and application to chaos control. Sci China Tech Sci, 2014, 57: 872–878

    Article  Google Scholar 

  10. Song Z G, Xu J. Stability switches and Bogdanov-Takens bifurcation in an inertial two-neuron coupling system with multiple delays. Sci China Tech Sci, 2014, 57: 893–904

    Article  Google Scholar 

  11. Wu A L, Zeng Z G. Anti-synchronization control of a class of memristive recurrent neural networks. Commun Nonlinear Sci Numer Simul, 2013, 18: 373–385

    Article  MathSciNet  MATH  Google Scholar 

  12. Itoh M, Chua L O. Autoassociative memory cellular neural networks. Int J Bifurcat Chaos, 2010, 20: 3225–3266

    Article  MathSciNet  MATH  Google Scholar 

  13. Sun X J, Shi X. Effects of channel blocks on the spiking regularity in clustered neuronal networks. Sci China Tech Sci, 2014, 57: 879–884

    Article  Google Scholar 

  14. Zhou L, Wu X J, Liu Z R. Distributed coordinated adaptive tracking in networked redundant robotic systems with a dynamic leader. Sci China Tech Sci, 2014, 57: 905–913

    Article  Google Scholar 

  15. Xie Y, Kang Y M, Liu Y, et al. Firing properties and synchronization rate in fractional-order Hindmarsh-Rose model neurons. Sci China Tech Sci, 2014, 57: 914–922

    Article  Google Scholar 

  16. Ye W J, Liu S Q, Liu X L. Synchronization of two electrically coupled inspiratory pacemaker neurons. Sci China Tech Sci, 2014, 57: 929–935

    Article  Google Scholar 

  17. Hopfield J J. Neurons with graded response have collective computational properties like those of 2-state neurons. P Natl Acad Sci USA, 1984, 81: 3088–3092

    Article  Google Scholar 

  18. Yang X S, Huang Y. Complex dynamics in simple Hopfield neural networks. Chaos, 2006, 16: 033114

    Article  MATH  Google Scholar 

  19. Li Q D, Yang X S, Yang F Y. Hyperchaos in Hopfield-type neural networks. Neurocomputing, 2005, 67: 275–280

    Article  Google Scholar 

  20. Storkey A J, Valabregue R. The basins of attractor of a new Hopfield learning rule. Neural Netw, 1999, 12: 869–876

    Article  Google Scholar 

  21. Zheng P, Tang W, Zhang J. Dynamic analysis of unstable Hopfield networks. Nonlinear Dyn, 2010, 61: 399–406

    Article  MathSciNet  MATH  Google Scholar 

  22. Bersini H, Sener P. The connections between the frustrated chaos and the intermittency chaos in small Hopfield networks. Neural Netw, 2002, 15: 1197–1204

    Article  Google Scholar 

  23. Chua L O. Memristor–missing circuit element. IEEE T Circuit Theory, 1971, 18: 507–519

    Article  Google Scholar 

  24. Chua L O, Kang S M. Memristive devices and systems. Proc IEEE 1976, 64: 209–223

    Article  MathSciNet  Google Scholar 

  25. Adhikari S P, Yang C, Kim H, et al. Memristor bridge synapse-based neural network and its learning. IEEE T Neural Netw Learning Syst, 2012, 23: 1426–1435

    Article  Google Scholar 

  26. Kim H, Sah M P, Yang C, et al. Neural synaptic weighting with a pulse-based memristor circuit. IEEE T Circuits-I, 2012, 59: 148–158

    Article  MathSciNet  Google Scholar 

  27. Tetzlaff R. Memristors and Memristive Systems. New York: Springer, 2014

    Book  Google Scholar 

  28. Wu A L, Zhang J, Zeng Z G. Dynamic behaviors of a class of memristor-based Hopfield networks. Phys Lett A, 2011, 375: 1661–1665

    Article  MathSciNet  MATH  Google Scholar 

  29. Strukov D B, Snider G S, Stewart D R, et al. The missing memristor found. Nature, 2008 453: 80–83

    Article  Google Scholar 

  30. Shin S, Kim K, Kang S M. Memristor applications for programmable analog ICs. IEEE T Nanotechnology, 2011, 10: 266–274

    Article  Google Scholar 

  31. Pershin Y V, Di Ventra M. Experimental demonstration of associative memory with memristive neural networks. Neural Netw, 2010, 23: 881–886

    Article  Google Scholar 

  32. Buscarino A, Fortuna L, Frasca M, et al. Memristive chaotic circuits based on cellular nonlinear networks. Int J Bifurcat Chaos, 2012, 22: 1250070

    Article  MathSciNet  Google Scholar 

  33. Li Q, S. Tang, Zeng H, et al. On hyperchaos in a small memristive neural network. Nonlinear Dyn, 2014, 78: 1087–1099

    Article  MATH  Google Scholar 

  34. Leonov G A, Kuznetsov N V, Vagaitsev V I. Localization of hidden Chua’s attractors. Phys Lett A, 2011, 375: 2230–2233

    Article  MathSciNet  MATH  Google Scholar 

  35. Leonov G A, Kuznetsov N V, Vagaitsev V I. Hidden attractor in smooth Chua system. Physica D, 2012, 241: 1482–1486

    Article  MathSciNet  MATH  Google Scholar 

  36. Leonov G A, Kuznetsov N V. Hidden attractors in dynamical systems: From hidden oscillation in Hilbert Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits. Int J Bifurcat Chaos, 2013, 23: 1330002

    Article  MathSciNet  MATH  Google Scholar 

  37. Leonov G A, Kuznetsov N V, Kiseleva M A, et al. Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dyn, 2014, 77: 277–288

    Article  Google Scholar 

  38. Molaie M, Jafari S, Sprott J C, et al. Simple chaotic ows with one stable equilibrium. Int J Bifurcat Chaos, 2013, 23: 1350188

    Article  MathSciNet  MATH  Google Scholar 

  39. Kingni S T, Jafari S, Simo H, et al. Three dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form. Eur Phys J Plus, 2014, 129: 76

    Article  Google Scholar 

  40. Jafari S, Sprott J C. Simple chaotic ows with a line equilibrium. Chaos Solitons Fractals, 2013, 57: 79–84

    Article  MathSciNet  Google Scholar 

  41. Jafari S, Sprott J C, Golpayegani S M R H. Elementary quadratic chaotic ows with no equilibria. Phys Lett A, 2013, 377: 699–702

    Article  MathSciNet  Google Scholar 

  42. Pham V T, Jafari S, Volos C, et al. Is that really hidden? The presence of complex fixed-points in chaotic flows with no equilibria. Int J Bifurcat Chaos, 2014, 24: 14500146

    MathSciNet  MATH  Google Scholar 

  43. Pham V T, Volos C, Jafari S, et al. Constructing a novel no-equilibrium chaotic system. Int J Bifurcat Chaos, 2014, 24: 1450073

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang X, Chen G. A chaotic system with only one stable equilibrium. Commun Nonlinear Sci Numer Simul, 2012, 17: 1264–1272

    Article  MathSciNet  Google Scholar 

  45. Wang X, Chen G. Constructing a chaotic system with any number of equilibria. Nonlinear Dyn, 2013, 71: 429–436

    Article  MathSciNet  Google Scholar 

  46. Wei Z. Dynamical behaviors of a chaotic system with no equilibria. Phys Lett A, 2011, 376: 102–108

    Article  MathSciNet  MATH  Google Scholar 

  47. Frederickson P, Kaplan J L, Yorke H L, et al. The Lyapunov dimension of strange attractor. J Differential Equ, 1983, 49: 185–207

    Article  MathSciNet  MATH  Google Scholar 

  48. Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series. Physica D, 1985, 16: 285–317

    Article  MathSciNet  MATH  Google Scholar 

  49. Kuznetsov N V, Alexeeva T A, Leonov G A. Invariance of Lyapunov characteristic exponents, Lyapunov exponents, and Lyapunov dimension for regular and non-regular linearization. ArXiv: 1401.2016v2, 2014

    Google Scholar 

  50. Leonov G A, Kuznetsov N V, Mokaev T N. Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur Phys J Special Topic, 2015, 224: 1421–1458

    Article  Google Scholar 

  51. Leonov G A, Kuznetsov N V. Time-varying linearization and the Perron effects. Int J Bifurcat Chaos, 2007, 17: 1079–1107

    Article  MathSciNet  MATH  Google Scholar 

  52. Kuznetsov N V, Leonov G A. On stability by the first approximation for discrete systems. In: Proceedings of International Conference on Physics and Control, Saint Petersburg, the RUSSIA, 2005. 596–599

    Google Scholar 

  53. Ma J, Wu X, Chu R, et al. Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn, 2014, 76: 1951–1962

    Article  Google Scholar 

  54. Buscarino A, Fortuna L, Frasca M. Experimental robust synchronization of hyperchaotic circuits. Physica D, 2009, 238: 1917–1922

    Article  MATH  Google Scholar 

  55. Banerjee. Chaos Synchronization and Cryptography for Secure communications. USA: IGI Global, 2010

    Google Scholar 

  56. Volos C K, Kyprianidis I M, Stouboulus I N. A chaotic path planning generator for autonomous mobile robots. Robot Auton Syst, 2012, 60: 651–656

    Article  Google Scholar 

  57. Volos C K, Kyprianidis I M, Stouboulus I N. Image encryption process based on chaotic synchronization phenomena. Signal Process, 2013, 93: 1328–1340

    Article  Google Scholar 

  58. Volos C K, Kyprianidis I M, Stouboulus I N. Experimental investigation on coverage performance of a chaotic autonomous mobile robot. Robot Auton Syst, 2013, 61: 1314–1322

    Article  Google Scholar 

  59. Li F, Liu Q, Guo H, et al. Simulating the electric activity of Fitz-Hugh-Nagumo neuron by using Josephson junction model. Nonlinear Dyn, 2012, 69: 2169–2179

    Article  MathSciNet  Google Scholar 

  60. Wu X, Ma J, Yuan Li, et al. Simulating electric activities of neurons by using PSPICE. Nonlinear Dyn, 2014, 75: 113–126

    Article  MathSciNet  Google Scholar 

  61. Rabinovich M, Huerta R, Bazhenov M, et al. Computer simulations of stimulus dependent state switching in basic circuits of bursting neurons. Phys Rev E, 1998, 58: 6418

    Article  Google Scholar 

  62. Sabir J, Stephane B, Jean-Marie B, et al. Synaptic coupling between two electronic neurons. Nonlinear Dyn, 2006, 44: 29–36

    Article  MATH  Google Scholar 

  63. Abarbanel D I, Talathi S S. Neural circuitry for recognizing interspike interval sequences. Phys Rev Lett, 2006, 96: 148104

    Article  Google Scholar 

  64. Sitt J D, Aliaga J. Versatile biologically inspired electronic. Phys Rev E, 2007, 76: 051919

    Article  Google Scholar 

  65. Kwon O, Kim K, Park S, et al. Effects of periodic stimulation on an overly activated neuronal circuit. Phys Rev E, 2011, 84: 021911

    Article  Google Scholar 

  66. Fortuna L, Frasca M, Xibilia M G. Chua’s Circuit Implementations: Yesterday, Today and Tomorrow. Singapore: World Scientific, 2009.

    Google Scholar 

  67. Vaidyanathan S, Pham V T, Volos C K. A 5-D hyperchaotic Rikitake dynamo system with hidden attractors. Eur Phys J Special Topic, 2015, 224: 1575–1592

    Article  Google Scholar 

  68. Tahir F R, Sajad J, Pham V T, et al. A novel no-equilibrium chaotic system with multiwing butterfly attractors. Int J Bifurcat Chaos, 2015, 25: 1550056

    Article  MathSciNet  Google Scholar 

  69. Shahzad M, Pham V T, Ahmad M A, et al. Synchronization and circuit design of a chaotic system with coexisting hidden attractors. Eur Phys J Special Topic, 2015, 224: 1637–1652

    Article  Google Scholar 

  70. Sedra S, Smith K C. Microelectronic Circuits. London: Oxford University Press, 2003

    Google Scholar 

  71. Ozkurt N, Savaci F A, Gunduzalp M. The circuit implementation of a wavelet function approximator. Analog Integr Circuits Process, 2002, 32: 171–175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad Jafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, V.T., Jafari, S., Vaidyanathan, S. et al. A novel memristive neural network with hidden attractors and its circuitry implementation. Sci. China Technol. Sci. 59, 358–363 (2016). https://doi.org/10.1007/s11431-015-5981-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5981-2

Keywords

Navigation