Skip to main content
Log in

Two-dimensional numerical manifold method with multilayer covers

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In order to reach the best numerical properties with the numerical manifold method (NMM), uniform finite element meshes are always favorite while constructing mathematical covers, where all the elements are congruent. In the presence of steep gradients or strong singularities, in principle, the locally-defined special functions can be added into the NMM space by means of the partition of unity, but they are not available to those complex problems with heterogeneity or nonlinearity, necessitating local refinement on uniform meshes. This is believed to be one of the most important open issues in NMM. In this study multilayer covers are proposed to solve this issue. In addition to the first layer cover which is the global cover and covers the whole problem domain, the second and higher layer covers with smaller elements, called local covers, are used to cover those local regions with steep gradients or strong singularities. The global cover and the local covers have their own partition of unity, and they all participate in the approximation to the solution. Being advantageous over the existing procedures, the proposed approach is easy to deal with any arbitrary-layer hanging nodes with no need to construct super-elements with variable number of edge nodes or introduce the Lagrange multipliers to enforce the continuity between small and big elements. With no limitation to cover layers, meanwhile, the creation of an even error distribution over the whole problem domain is significantly facilitated. Some typical examples with steep gradients or strong singularities are analyzed to demonstrate the capacity of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi G H. Manifold method of material analysis. In: Transactions of the 9th Army Conference on Applied Mathematics and Computing. Report No. 92–1, U.S. Army Research Office, Minneapolis, MN, 1991, 57–76

    Google Scholar 

  2. Lin J S. A mesh-based partition of unity method for discontinuity modeling. Comput Method Appl M, 2003, 192: 1515–1532

    Article  MATH  Google Scholar 

  3. Babuška I, Melenk J M. The partition of unity method. Int J Numer Meth Eng, 1997, 40: 727–758

    Article  MathSciNet  MATH  Google Scholar 

  4. Strouboulis T, Copps K, Babuška I. The generalized finite element method. Comput Method Appl M, 2001, 190: 4801–4191

    Article  MathSciNet  MATH  Google Scholar 

  5. Dolbow J, Moës N, Belytschko T. An extended finite element method for modeling crack growth with frictional contact. Comput Method Appl M, 2001, 190: 6825–6846

    Article  MathSciNet  MATH  Google Scholar 

  6. Belytschko T, Lu Y Y, Gu L. Element–free galerkin methods. Int J Numer Meth Eng, 1994, 37: 229–256

    Article  MathSciNet  MATH  Google Scholar 

  7. Terada K, Asai M, Yamagishi M. Finite cover method for linear and non–linear analyses of heterogeneous solids. Int J Numer Meth Eng, 2003, 58: 1321–1346

    Article  MATH  Google Scholar 

  8. Chen G Q, Ohnishi Y, Ito T. Development of high–order manifold method. Int J Numer Meth Eng, 1998, 43: 685–712

    Article  MATH  Google Scholar 

  9. Jiang Q H, Zhou C B, Li D Q. A three–dimensional numerical manifold method based on tetrahedral meshes. Comput Struct, 2009, 87: 880–889

    Article  Google Scholar 

  10. Tian R, Yagawa G, Terasaka H. Linear dependence problems of partition of unity-based generalized FEMs. Comput Method Appl M, 2006, 195: 4768–4782

    Article  MathSciNet  MATH  Google Scholar 

  11. An X M, Li L X, Ma G W, et al. Prediction of rank deficiency in partition of unity–based methods with plane triangular or quadrilateral meshes. Comput Method Appl M, 2011, 200: 665–674

    Article  MathSciNet  MATH  Google Scholar 

  12. An X M, Liu X Y, Zhao Z Y, et al. Proof of linear independence of flat-top PU-based high-order approximation. Eng Anal Bound Elem, 2014, 44: 104–111

    Article  MathSciNet  MATH  Google Scholar 

  13. Cai Y C, Zhuang X Y, Augarde C. A new partition of unity finite element free from the linear dependence problem and possessing the delta property. Comput Method Appl M, 2010, 199: 1063–1043

    Article  MathSciNet  MATH  Google Scholar 

  14. Terada K, Kurumatani M. Performance assessment of generalized elements in the finite cover method. Finite Elem Anal Des, 2004, 41: 111–132

    Article  Google Scholar 

  15. Zheng H, Xu D D. New strategies for some issues of numerical manifold method in simulation of crack propagation. Int J Numer Meth Eng, 2014, 97: 986–1010

    Article  MathSciNet  Google Scholar 

  16. Wu Z J, Wong L N Y. Frictional crack initiation and propagation analysis using the numerical manifold method. Comput Geotech, 2012, 39: 38–53

    Article  Google Scholar 

  17. Kurumatani M, Terada K. Finite cover method with multi–cover layers for the analysis of evolving discontinuities in heterogeneous media. Int J Numer Meth Eng, 2009, 79: 1–24

    Article  MATH  Google Scholar 

  18. Ma G W, An X M, Zhang H H, et al. Modeling complex crack problems using the numerical manifold method. Int J Fracture, 2009, 156: 21–35

    Article  MATH  Google Scholar 

  19. An X M, Fu G Y, Ma G W. A comparison between the NMM and the XFEM in discontinuity modeling. Int J Comput Methods, 2012, 9: 1240030

    Article  Google Scholar 

  20. Ning Y J, An X M, Ma G W. Footwall slope stability analysis with the numerical manifold method. Int J Rock Mech Min, 2011, 48: 964–975

    Article  Google Scholar 

  21. Wu Z J, Wong L N Y. Frictional crack initiation and propagation analysis using the numerical manifold method. Comput Geotech, 2012, 39: 38–53

    Article  Google Scholar 

  22. Zhang Z N, Zheng H, Ge X R. Triangular element partition method with consideration of crack tip. Sci China Tech Sci, 2013, 56: 2081–2088

    Article  Google Scholar 

  23. Zhang Z R, Zhang X W, Yan J H. Manifold method coupled velocity and pressure for Navier–Stokes equations and direct numerical solution of unsteady incompressible viscous flow. Comput Fluids, 2010, 39: 1353–1365

    Article  MathSciNet  MATH  Google Scholar 

  24. Fan H, Zheng H. MRT-LBM-based numerical simulation of seepage flow through fractal fracture networks. Sci China Tech Sci, 2013, 56: 3115–3122

    Article  Google Scholar 

  25. Zheng H, Liu Z J, Ge X R. Numerical manifold space of Hermitian form and application to Kirchhoff’s thin plate problems. Int J Numer Meth Eng, 2013, 95: 721–739

    Article  MathSciNet  Google Scholar 

  26. Li S C, Li S C, Cheng Y M. Enriched meshless manifold method for two-dimensional crack modeling. Theor Appl Fract Mec, 2005, 44: 234–248

    Article  Google Scholar 

  27. Zheng H, Liu F, Li C G. Primal mixed solution to unconfined seepage flow in porous media with numerical manifold method. Appl Math Model, 2015, 39: 794–808

    Article  MathSciNet  Google Scholar 

  28. Zheng H, Liu F, Li C G. The MLS-based numerical manifold method with applications to crack analysis. Int J Fracture, 2014, 190: 47–166

    Article  Google Scholar 

  29. Zhang H H, Zhang S Q. Extract of stress intensity factors on honeycomb elements by the numerical manifold method. Finite Elem Anal Des, 2012, 59: 55–65

    Article  MathSciNet  Google Scholar 

  30. Szabó B, Babuška I. Introduction to Finite Element Analysis: Formulation, Verification and Validation. Wiley: Chichester, 2011

    Book  MATH  Google Scholar 

  31. Fish J. The s-version of the finite element method. Comput Struct, 1992, 43: 539–547

    Article  MATH  Google Scholar 

  32. Spivak M. Calculus on Manifolds. Benjamin, New York, 1965

    MATH  Google Scholar 

  33. Zheng H, Li J L. A practical solution for KKT systems. Numer Algorithms, 2007, 46: 105–119

    Article  MathSciNet  MATH  Google Scholar 

  34. Ventura G. An augmented Lagrangian approach to essential boundary conditions in meshless methods. Int J Numer Meth Eng, 2002, 53: 25–842

    Article  Google Scholar 

  35. Durbin P A, Iaccarino G. An approach to local refinement of structured grids. J Comput Phys, 2002, 181: 639–653

    Article  MATH  Google Scholar 

  36. Paszynski M, Kurtz J, Demkowicz L. Parallel, fully automatic hp–adaptive 2D finite element package, TICAM Report 04–07. The University of Texas at Austin, 2004

    Google Scholar 

  37. Peano A G. Hierarchies of conforming finite elements for plane elasticity and plate bending. Comput Math Appl, 1976, 2: 211–224

    Article  MATH  Google Scholar 

  38. Rachowicz W, Demkowicz L. An hp–adaptive finite element method for electromagnetics, Part II, a 3D implementation. Int J Numer Meth Eng, 2002, 53: 147–180

    Article  MathSciNet  MATH  Google Scholar 

  39. Tian L, Chen F, Du Q. Adaptive finite element methods for elliptic equations over hierarchical T–meshes. J Comput Appl Math, 2011, 236: 878–891

    Article  MathSciNet  MATH  Google Scholar 

  40. Fries T P, Byfut A, Alizada A, et al. Hanging nodes and XFEM. Int J Numer Meth Eng, 2011, 86: 404–430

    Article  MathSciNet  MATH  Google Scholar 

  41. Babuška I, Miller A. A feedback finite element method with a posteriori error estimation: Part I, the finite element method and some basic properties of the a posteriori error estimator. Comput Method Appl M, 1987, 61: 1–40

    Article  MATH  Google Scholar 

  42. Belgacem F B. The mortar finite–element method with Lagrange multipliers. Numer Math, 1999, 84: 173–197

    Article  MathSciNet  MATH  Google Scholar 

  43. McDevitt T W, Laursen T A. A mortar–finite element formulation for friction contact problems. Int J Numer Meth Eng, 2000, 48: 1525–1547

    Article  MathSciNet  MATH  Google Scholar 

  44. Wheeler M F, Yotov I. Multigrid on the interface for mortar mixed finite–element methods for elliptic problems. Comput Method Appl M, 2000, 184: 287–302

    Article  MathSciNet  MATH  Google Scholar 

  45. Casadei F, Rimoli J J, Ruzzene M. A geometric multiscale finite element method for the dynamic analysis of heterogeneous solids. Comput Method Appl M, 2013, 263: 56–70

    Article  MATH  Google Scholar 

  46. Gupta A K. A finite element for transition from a fine to a coarse grid. Int J Numer Meth Eng, 1978, 12: 35–45

    Article  MATH  Google Scholar 

  47. Cho Y S, Im S. MLS-based variable-node elements compatible with quadratic interpolation, Part I, formulation and application for nonmatching meshes. Int J Numer Meth Eng, 2006, 65: 494–516

    Article  MATH  Google Scholar 

  48. Baitsch M, Hartmann D. Piecewise polynomial shape functions for hp–finite element methods. Comput Method Appl M, 2009, 198: 1126–1137

    Article  MathSciNet  MATH  Google Scholar 

  49. Zheng H, Yang Y T. A direct solution to linear dependency issue arising from GFEM. In: Computer Methods and Recent Advances in Geomechanics-Proceedings of the 14th Int. Conference of International Association for Computer Methods and Recent Advances in Geomechanics, IACMAG, Paper No. 1092165, Keoto, Japan, 2014

    Google Scholar 

  50. Tada H, Paris P C, Irwin G R. The Stress Analysis of Cracks Handbook. New York: ASME Press, 2000

    Book  Google Scholar 

  51. Establishment C A. Handbook of the Stress Intensity Factor (in Chinese). Beijing: Science Press, 1993

    Google Scholar 

  52. Blum H, Lin Q, Rannacher R. Asymptotic error expansion and Richardson extrapolation for linear finite elements. Numer Math, 1986, 49: 11–37

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zheng, H. Two-dimensional numerical manifold method with multilayer covers. Sci. China Technol. Sci. 59, 515–530 (2016). https://doi.org/10.1007/s11431-015-5907-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5907-z

Keywords

Navigation