Skip to main content
Log in

Statistical study on the suprathermal electrons properties around dipolarization fronts in Earth’s magnetotail

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In order to investigate the suprathermal electron flux (>30 keV) around dipolarization fronts (DFs), we statistically studied the suprathermal electron flux variations and pitch angle distributions of hundreds of earthward propagating DFs observed by THEMIS spacecraft during its tail seasons in years 2008–2009. We focused on the electron flux variations across DFs and electron anisotropies behind DFs. We divided DF into three sectors in the equatorial plane: Dusk, central and dawn sectors. The sectors are defined according to the DF normals with respect to DF’s meridian in the equatorial plane (the symmetric line of DF). We found that events with electron flux increases and decreases behind the fronts had no particular dependence on the observation locations. In addition, there was no obvious dependence of electron anisotropy behind DF on the different sectors of DF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nakamura R, Baumjohann W, Klecker B, et al. Motion of the dipolarization front during a flow burst event observed by Cluster. Geophys Res Lett, 2002, 29: 1942

    Article  Google Scholar 

  2. Runov A, Angelopoulos V, Sitnov M, et al. THEMIS observations of an earthward propagating dipolarization front. Geophys Res Lett, 2009, 36: L14106

    Article  Google Scholar 

  3. Zhou M, Ashour-Abdalla M, Deng X H, et al. THEMIS observation of multiple dipolarization fronts and associated wave characteristics in the near-Earth magnetotail. Geophys Res Lett, 2009, 36: L20107

    Article  Google Scholar 

  4. Liu J, Angelopoulos V, Runov A, et al. On the current sheets surrounding dipolarizing flux bundles in the magnetotail: The case for wedgelets. J Geophys Res, 2013, 118: 2000–2020

    Article  Google Scholar 

  5. Ma Y D, Cao C J, Fu H S, et al. MHD and kinetic analysis of flow bursts in the Earth’s plasma sheet. Sci China Tech Sci, 2014, 57: 55–66

    Article  Google Scholar 

  6. Sitnov M I, Swisdak M, Divin A V, et al. Dipolarization fronts as a signature of transient reconnection in the magnetotail. J Geophys Res, 2009, 114: A04202

    Google Scholar 

  7. Zhou M, Huang S Y, Deng X H, et al. Observation of sharp negative dipolarization front in the reconnection outflow region. Chin Phys Lett, 2011, 28: 109402

    Article  Google Scholar 

  8. Fu H S, Cao J B, Khotyaintsev Y V, et al. Dipolarization fronts as a consequence of transient reconnection: In situ evidence. Geophys Res Lett, 2013, 40: 6023–6027

    Article  Google Scholar 

  9. Guzdar P N, Hassam A B, Swisdak M, et al. A simple MHD model for the formation of multiple dipolarization fronts. Geophys Res Lett, 2010, 37: L20102

    Google Scholar 

  10. Lu H Y, Cao J B, Zhou M, et al. Electric structure of dipolarization fronts associated with interchange instability in the magnetotail. J Geophys Res, 2013, 118: 6019–6025

    Article  Google Scholar 

  11. Deng X H, Ashour-Abdalla M, Zhou M, et al. Wave and particle characteristics of earthward electron injections associated with dipolarization fronts. J Geophys Res, 2010, 115: A09225

    Google Scholar 

  12. Ashour-Abdalla M, El-alaoui M, Goldstein M L, et al. Observations and simulations of nonlocal acceleration of electrons in magnetotail magnetic reconnection events. Nat Phys, 2011, 7: 360–365

    Article  Google Scholar 

  13. Fu H S, Khotyaintsev Y V, André M, et al. Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts. Geophys Res Lett, 2011, 38: L16104

    Google Scholar 

  14. Vaivads A, Retino A, Khotyaintsev Y V, et al. Suprathermal electron acceleration during reconnection onset in the magnetotail. Ann Geophys, 2011, 29: 1917–1925

    Article  Google Scholar 

  15. Huang S Y, Zhou M, Deng X H, et al. Kinetic structure and wave properties associated with sharp dipolarization front observed by Cluster. Ann Geophys, 2012, 30: 97–107

    Article  Google Scholar 

  16. Tang C L, Lu L, Zhou M, et al. THEMIS observations of electron acceleration associated with the evolution of substorm dipolarization in the near-Earth tail. J Geophys Res, 2013, 118: 4237–4247

    Article  Google Scholar 

  17. Birn J M, Artemyev A V, Baker D N, et al. Particle acceleration in the magnetotail and aurora. Space Sci Rev, 2012, 173: 49–102

    Article  Google Scholar 

  18. Gabrielse C, Angelopoulos V, Runov A, et al. The effects of transient localized electric fields in equatorial particle acceleration and transport towards the inner magnetosphere. J Geophys Res, 2012, 117: A10213

    Article  Google Scholar 

  19. Runov A, Angelopoulos V, Gabrielse C, et al. Electron fluxes and pitch-angle distributions at dipolarization fronts: THEMIS multi-point observations. J Geophys Res, 2013, 118: 744–755

    Article  Google Scholar 

  20. Hwang K J, Goldstein M L, Lee E, et al. Cluster observations of multiple dipolarization fronts. J Geophys Res, 2011, 116: A00I32

    Google Scholar 

  21. Sergeev V A, Angelopoulos V, Gosling J T, et al. Detection of localized plasma-depleted flux tubes or bubbles in the midtail plasma sheet. J Geophys Res, 1996, 101: 817–10826

    Article  Google Scholar 

  22. Birn J M, Raeder J, Wang Y L, et al. On the propagation of bubbles in the magnetotail. Ann Geophys, 2004, 22: 1773–1786

    Article  Google Scholar 

  23. Pan Q, Ashour-Abdalla M, El-alaoui M, et al. Adiabatic acceleration of suprathermal electrons associated with dipolarization fronts. J Geophys Res, 2012, 117: A12224

    Google Scholar 

  24. Zhou M, Deng X H, Ashour-Abdalla M, et al. Cluster observations of kinetic structures and electron acceleration within a dynamic plasma bubble. J Geophys Res, 2013, 118: 674–684

    Article  Google Scholar 

  25. Khotyaintsev Y V, Cully C M, Vaivads A, et al. Plasma jet braking: Energy dissipation and nonadiabatic electrons. Phys Rev Lett, 2011, 106: 165001

    Article  Google Scholar 

  26. Wang D D, Yuan Z G, Deng X H, et al. Compression-related EMIC waves drive relativistic electron precipitation. Sci China Tech Sci, 2014, 57: 2418–2425

    Article  Google Scholar 

  27. Fu H S, Khotyaintsev Y V, Vaivads A, et al. Pitch angle distribution of suprathermal electrons behind dipolarization fronts: A statistical overview. J Geophys Res, 2012, 117: A1222

    Google Scholar 

  28. Auster H U, Glassmeier K H, Magnes W, et al. The THEMIS fluxgate magnetometer. Space Sci Rev, 2008, 141: 235–264

    Article  Google Scholar 

  29. McFadden J P, Carlson C W, Larson D, et al. The THEMIS ESA plasma instrument and in-flight calibration. Space Sci Rev, 2008, 141: 277–302

    Article  Google Scholar 

  30. Angelopoulos V. The THEMIS mission. Space Sci Rev, 2008, 141: 5–34

    Article  Google Scholar 

  31. Wu M Y, Lu Q M, Volwerk M, et al. A statistical study of electron acceleration behind the dipolarization fronts in the magnetotail. J Geophys Res, 2013, 118: 4804–4810

    Article  Google Scholar 

  32. Liu J, Angelopoulos V, Zhou X Z, et al. On the role of pressure and flow perturbations around dipolarizing flux bundles. J Geophys Res, 2013, 118: 7104–7118

    Article  Google Scholar 

  33. Northrop T G. The adiabatic motion of charged particles. New York: Interscience Publishers, 1963

    MATH  Google Scholar 

  34. Li H M, Zhou M, Deng X H, et al. Electron dynamics and wave activities associated with mirror mode structures in the near-Earth magnetotail. Sci China Tech Sci, 2014, 57: 1541–1551

    Article  Google Scholar 

  35. Zhou M, Ni B, Huang S Y, et al. Observation of large-amplitude magnetosonic waves at dipolarization fronts. J Geophys Res, 2014, 119, doi: 10.1002/2014JA019796

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhou, M. & Deng, X. Statistical study on the suprathermal electrons properties around dipolarization fronts in Earth’s magnetotail. Sci. China Technol. Sci. 58, 961–966 (2015). https://doi.org/10.1007/s11431-015-5830-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5830-3

Keywords

Navigation