Skip to main content
Log in

Transition of electric activity of neurons induced by chemical and electric autapses

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Autapse connected to the neuron can change the electric activity of neuron. The effect of autapse on neuronal activity is often described by adding an additive forcing current along a close loop, which is described by a time-delayed feedback on the membrane potential. Neuron often responds to electric autapse forcing sensitively and quickly, while the chemical autapse changes the electric activity of neuron slowly. By applying external forcing, a shift transition of electric activity can be more easily induced by the electric autapse than the chemical autapse. Our results confirm that chemical autapse can enhance and/or suppress the transition of electric activity with excitable or inhibitory type driven by electric autapse, vice versa. It indicates that an appropriate switch-off-on for autapse can make the neuron give different types of response to external forcing. Particularly, cooperation and competition between chemical and electric autapse help neuron response to external forcing in the most reliable way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol, 1952, 117: 500–544

    Article  Google Scholar 

  2. Yang Z Q, Lu Q S. Different types of bursting in Chay neuronal model. Sci China Ser G Phys Mech Astron, 2008, 51: 687–698

    Article  Google Scholar 

  3. Izhikevich E M. Which model to use for cortical spiking neurons? IEEE Trans Neural Networks, 2004, 15: 1063–1070

    Article  Google Scholar 

  4. Hindmarsh J L, Rose R M. A model of the nerve impulse using two first-order differential equations. Nature, 1982, 276: 162–164

    Article  Google Scholar 

  5. Bulsara A, Jacobs E W, Zhou T, et al. Stochastic resonance in a single neuron model: Theory and analog simulation. J Theor biol, 1991, 152: 531–555

    Article  Google Scholar 

  6. Lindner B, Schimansky-Geier L. Analytical approach to the stochastic FitzHugh-Nagumo system and coherence resonance. Phys Rev E, 1999, 60: 7270–7275

    Article  Google Scholar 

  7. Kitajo K, Nozaki D, Ward L M, et al. Behavioral stochastic resonance within the human brain. Phys Rev Lett, 2003, 90: 218103

    Article  Google Scholar 

  8. Aldo F A, Luc P J, Daniel M W. Noise in the nervous system. Nat Rev Neurosci, 2008, 9: 292–303

    Article  Google Scholar 

  9. Mark D M, Derek A. What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PloS Comput Biol, 2009, 5: e1000348

    Article  Google Scholar 

  10. Peter H. Stochastic resonance in biology. How noise can enhance detection of weak signals and help improve biological information processing. Chem Phys Chem, 2002, 3: 285–290

    Google Scholar 

  11. Liu F, Wang J F, Wang W. Frequency sensitivity in weak signal detection. Phys Rev E 1999, 59: 3453–3460

    Article  Google Scholar 

  12. Wang W, Chen G, Wang Z D. 40-Hz coherent oscillations in neuronal systems. Phys Rev E, 1997, 56: 3728–3731

    Article  Google Scholar 

  13. Eckmann J P, Feinerman O, Gruendlinger L, et al. The physics of living neural networks. Phys Rep, 2007, 449: 54–76

    Article  MathSciNet  Google Scholar 

  14. Perc M, Stochastic resonance on weakly paced scale-free networks. Phys Rev E, 2008, 78: 036105

    Article  Google Scholar 

  15. Uzun R, Ozer M, Perc M. Can scale-freeness offset delayed signal detection in neuronal networks? EPL, 2014, 105: 60002

    Article  Google Scholar 

  16. Yılmaz E, Uzuntarla M, Ozer M, et al. Stochastic resonance in hybrid scale-free neuronal networks. Physica A, 2013, 392: 5735–5741

    Article  MathSciNet  Google Scholar 

  17. Guo D Q, Wang Q Y, Perc M. Complex synchronous behavior in interneuronal networks with delayed inhibitory and fast electrical synapses. Phys Rev E, 2012, 85: 0161905

    Google Scholar 

  18. Wang Q Y, Zhang H H, Perc M, et al. Multiple firing coherence resonances in excitatory and inhibitory coupled neurons. Commun Nonlinear Sci Numer Simulat, 2012, 17: 3979–3988

    Article  MATH  MathSciNet  Google Scholar 

  19. Gu H G, Jia B, Li Y Y, et al. White noise-induced spiral waves and multiple spatial coherence resonances in a neuronal network with type I excitability. Physica A, 2013, 392: 1361–1374

    Article  MathSciNet  Google Scholar 

  20. Tang Z, Li Y Y, Xi L, et al. Spiral waves and multiple spatial coherence resonances induced by colored noise in neuronal network. Commun Theor Phys, 2012, 57: 61–67

    Article  MATH  Google Scholar 

  21. Hu B L, Ma J, Tang J. Selection of multiarmed spiral waves in a regular network of neurons. PLoS One, 2013, 8: e69251

    Article  Google Scholar 

  22. Ma J, Huang L, Ying H P, et al. Detecting the breakup of spiral waves in small-world networks of neurons due to channel block. Chin Sci Bull, 2012, 57: 2094–2101

    Article  Google Scholar 

  23. Ma J, Hu B L, Wang C N, et al., Simulating the formation of spiral wave in the neuronal system. Nonlinear Dyn, 2013, 73: 73–83

    Article  MathSciNet  Google Scholar 

  24. Ma J, Wang C N, Ying H P, et al. Emergence of target waves in neuronal networks due to diverse forcing currents. Sci China Phys Mech Astro, 2013, 56: 1126–1138

    Article  Google Scholar 

  25. Ma J, Wu Y, Wu N J, et al. Detection of ordered wave in the networks of neurons with changeable connection. Sci China Phys Mech Astro, 2013, 56: 952–959

    Article  Google Scholar 

  26. Liu S B, Wu Y, Li J J, et al. The dynamic behavior of spiral waves in stochastic Hodgkin-Huxley neuronal networks with ion channel blocks. Nonlinear Dyn, 2013, 73: 1055–1063

    Article  MathSciNet  Google Scholar 

  27. Ma J, Huang L, Tang J, et al. Spiral wave death, breakup induced by ion channel poisoning on regular Hodgkin-Huxley neuronal networks. Commun Nonlinear Sci Numer Simulat, 2012, 17: 4281–4293

    Article  MATH  MathSciNet  Google Scholar 

  28. Li F, Ma J. Selection of spiral wave in coupled network under Gaussian colored noise. Int J Mod Phys B, 2013, 27: 13501154

    Google Scholar 

  29. Chen J X, Peng L, Ma J, et al. Liberation of a pinned spiral wave by a rotating electric pulse. EPL, 2014, 107: 38001

    Article  Google Scholar 

  30. Zhao Y H, Lou Q, Chen J X, et al. Emitting waves from heterogeneity by a rotating electric field. Chaos, 2013, 23: 033141

    Article  Google Scholar 

  31. Tang J, Yi M, Chen P, et al. The influence of diversity on spiral wave in the cardiac tissue. EPL, 2012, 97: 28003

    Article  Google Scholar 

  32. Hu B, Wang QY. The conditions for onset of beta oscillations in an extended subthalamic nucleus-globus pallidus network. Sci China Tech Sci, 2014, 57: 2020–2027

    Article  Google Scholar 

  33. Wang H X, Wang Q Y, Zheng Y H. Bifurcation analysis for Hindmarsh-Rose neuronal model with time-delayed feedback control and application to chaos control. Sci China Tech Sci, 2014, 57: 872–878

    Article  Google Scholar 

  34. Song Z G, Xu J. Stability switches and Bogdanov-Takens bifurcation in an inertial two-neuron coupling system with multiple delays. Sci China Tech Sci, 2014, 57: 893–904

    Article  Google Scholar 

  35. Jia B, Gu H G, Song S L. Experimental researches on different complex bifurcation procedures of neural firing patterns (in Chinese). Sci China Phys Mech, 2013, 43: 518–523

    Google Scholar 

  36. Gu H G, Pan B B, Xu J. Experimental observation of spike, burst and chaos synchronization of calcium concentration oscillations. EPL, 2014, 106: 50003

    Article  Google Scholar 

  37. Gu H G, Chen S G. Potassium-induced bifurcations and chaos of firing patterns observed from biological experiment on a neural pacemaker. Sci China Tech Sci, 2014, 57: 864–871

    Article  Google Scholar 

  38. Gu H G. Experimental observation of transition from chaotic bursting to chaotic spiking in a neural pacemaker. Chaos, 2013, 23: 023126

    Article  Google Scholar 

  39. Xie Y, Kang Y M, Liu Y, et al. Firing properties and synchronization rate in fractional-order Hindmarsh-Rose model neurons. Sci China Tech Sci, 2014, 57: 914–922

    Article  Google Scholar 

  40. Wang R B, Zhang Z K. Energy coding in biological neural networks. Cogn Neurodyn, 2007, 1: 203–212

    Article  Google Scholar 

  41. Wang R B, Zhang Z K. Energy coding and energy functions for local activities of the brain. Neucomput, 2009, 73: 139–150

    Article  Google Scholar 

  42. Volman V, Perc M, Bazhenov M. Gap junctions and epileptic seizures-Two sides of the same coin? PLoS ONE, 2011, 6: e20572

    Article  Google Scholar 

  43. Bekkers J M. Synaptic transmission: A new kind of inhibition. Curr Biol, 2002, 12: R648–R650

    Article  Google Scholar 

  44. Bekkers J M. Synaptic transmission: Functional autapses in the cortex. Curr Biol, 2003, 13: 433–435

    Article  Google Scholar 

  45. Bekkers J M. Synaptic transmission: excitatory autapses find a function? Curr Biol, 2009, 19: R296–298

    Article  Google Scholar 

  46. Connelly W M. Autaptic connections and synaptic depression constrain and promote gamma oscillations. PLoS ONE, 2014, 9: e89995

    Article  Google Scholar 

  47. Herrmann C S, Klaus A. Autapse Turns Neuron into Oscillator. Int J Bifurcat Chaos, 2004, 14: 623–633

    Article  MATH  MathSciNet  Google Scholar 

  48. Yun Y L, Schmid G, Hänggi P, et al. Spontaneous spiking in an autaptic Hodgkin-Huxley setup. Phys Rev E, 2010, 82: 061907

    Article  MathSciNet  Google Scholar 

  49. Wang H T, Ma J, Chen Y L, et al. Effect of an autapse on the firing pattern transition in a bursting neuron. Commun Nonlinear Sci Numer Simulat, 2014, 19: 3242–3254

    Article  MathSciNet  Google Scholar 

  50. Wang H T, Wang L F, Chen Y L, et al. Effect of autaptic activity on the response of a Hodgkin-Huxley neuron. Chaos, 2014, 24: 033122

    Article  Google Scholar 

  51. Qin H X, Ma J, Jin W Y, et al. Dynamics of electric activities in neuron and neurons of network induced by autapse. Sci China Tech Sci, 2014, 57: 936–946

    Article  Google Scholar 

  52. Qin H X, Ma J, Wang C N, et al. Autapse-induced target wave, spiral wave in regular network of neurons. Sci China Phys Mech Astro, 2014, 57: 1918–1926

    Article  Google Scholar 

  53. Ren G D, Wu G, Ma J, et al. Simulation of electric activity of neuron by setting up a reliable neuronal circuit driven by electric autapse. Acta Phys Sin, 2015, 64: 058702

    Google Scholar 

  54. Belykh I, de Lange E, Hasler M. Synchronization of bursting neurons: What matters in the network topology. Phys Rev Lett, 2005, 94: 188101

    Article  Google Scholar 

  55. Wu X Y, Ma J, Xie Z B, et al., Effect of inhomogeneous distribution of ion channels on collective electric activities of neurons in a ring network. Acta Phys Sin, 2013, 62: 240507

    Google Scholar 

  56. Tang J, Luo J M, Ma J, et al. Spiral waves in systems with fractal heterogeneity. Physica A, 2013, 392: 5764–5771

    Article  MathSciNet  Google Scholar 

  57. Yang Z Q, Hao L J. Dynamics of different compound bursting in two phantom bursting mechanism models. Sci China Tech Sci, 2014, 57: 885–892

    Article  Google Scholar 

  58. Jiao X F, Zhu D F. Phase-response synchronization in neuronal population. Sci China Tech Sci, 2014, 57: 923–928

    Article  Google Scholar 

  59. Ye W J, Liu S Q, Liu X L. Synchronization of two electrically coupled inspiratory pacemaker neurons. Sci China Tech Sci, 2014, 57: 929–935

    Article  Google Scholar 

  60. Qin H X, Ma J, Jin W Y, et al. Dislocation coupling-induced transition of synchronization in two-layer neuronal networks. Commun Theor Phys, 2014, 62: 755–767

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Wang, C., Ma, J. et al. Transition of electric activity of neurons induced by chemical and electric autapses. Sci. China Technol. Sci. 58, 1007–1014 (2015). https://doi.org/10.1007/s11431-015-5826-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5826-z

Keywords

Navigation