Skip to main content
Log in

A brief review on α-zirconium phosphate intercalation compounds and nano-composites

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The layer structured zirconium phosphate (ZrP) can be intercalated with atoms, molecules, small organic groups and even polymers. The structures and properties of the ZrP intercalation compounds can be deliberately tuned, leading to promising potential applications in many fields. This article provides a brief review on the experimental results of the ZrP intercalation compounds, with the focus on the polymer/α-zirconium phosphate (α-ZrP) nano-composites. The computer simulations of the ZrP intercalation compounds at the atomic level play a significant role in designing and understanding the properties of ZrP, and in the promotion of the applications of compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6: 183–191

    Article  Google Scholar 

  2. Castro Neto A H, Peres N M R, Novoselov K S, et al. The electronic properties of graphene. Rev Mod Phys, 2009, 81: 109–162

    Article  Google Scholar 

  3. Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor. Phys Rev Lett, 2010, 105: 136805

    Article  Google Scholar 

  4. Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS2. Nano Lett, 2010, 10: 1271–1275

    Article  Google Scholar 

  5. Tian W, Huang L B, Wang D W, et al. A general, rapid and solvent-free approach to fabricating nanostructured polymer surfaces. Sci China Tech Sci, 2014, 57: 2328–2334

    Article  Google Scholar 

  6. Lee S W, Cheng Y T, Ryu I, et al. Cold-temperature deformation of nano-sized tungsten and niobium as revealed by in-situ nanomechanical experiments. Sci China Tech Sci, 2014, 57: 652–662

    Article  Google Scholar 

  7. Cao G, Garcia M E, Alcala M, et al. Chiral molecular recognition in intercalated zirconium phosphate. J Am Chem Soc, 1992, 114: 7574–7575

    Article  Google Scholar 

  8. Bujoli B, Lane S M, Nonglanton G, et al. Metal phosphonates applied to biotechnologies: A novel approach to oligonucleotide microarrays. Chem Eur J, 2005, 11: 1980–1988

    Article  Google Scholar 

  9. Kumar C V, Chaudari A. Proteins immobilized at the galleries of layered ΰ-zirconium phosphate: Structure and activity studies. J Am Chem Soc, 2000, 122: 830–837

    Article  Google Scholar 

  10. Costantino U, Curini M, Rosati O. Heterogeneous catalysis in liquid phase organic synthesis, promoted by layered zirconium phosphates and phosphonates. Curr Org Chem, 2004, 8: 591–606

    Article  Google Scholar 

  11. Bellezza F, Cipiciani A, Costantino U, et al. Zirconium phosphate and modified zirconium phosphates as supports of lipase. Preparation of the composites and activity of the supported enzyme. Langmuir, 2002, 18: 8737–8742

    Google Scholar 

  12. Kumar C V, Chaudhari A, Rosenthal G L. Enhanced energy transfer between aromatic chromophores bound to hydrophobically modified layered zirconium phosphate suspensions. J Am Chem Soc, 1994, 116: 403–404

    Article  Google Scholar 

  13. Clearfield A, Stynes J A. The preparation of crystalline zirconium phosphate and some observations on its ion exchange behavior. J Inorg Nucl Chem, 1964, 26: 117–129

    Article  Google Scholar 

  14. Sun L, O’Reilly J Y, Kong D, et al. The effect of guest molecular architecture and host crystallinity upon the mechanism of the intercalation reaction. J Colloid Interface Sci, 2009, 333: 503–509

    Article  Google Scholar 

  15. Xu S, Whitin J C, Yu T T S, et al. Capture of phosphopeptides using ΰ-zirconium phosphate nanoplatelets. Anal Chem, 2008, 80: 5542–5549

    Article  Google Scholar 

  16. Clearfield A, Smith G D. Crystallography and structure of alpha-zirconium bis(monohydrogen orthophosphate) monohydrate. Inorg Chem, 1969, 8: 431–436

    Article  Google Scholar 

  17. Andersen A M K, Norby P, Hanson J C, et al. Preparation and characterization of a new 3-dimensional zirconium hydrogen phosphate, ?-Zr(HPO4)2. Determination of the complete crystal structure combining synchrotron X-ray single-crystal diffraction and neutron powder diffraction. Inorg Chem, 1998, 37: 876–881

    Google Scholar 

  18. Sun L, Boo W J, Sue H J, et al. Preparation of α-zirconium phosphate nanoplatelets with wide variations in aspect ratios. New J Chem, 2007, 31: 39–43

    Article  Google Scholar 

  19. Brandão L S, Mendes L C, Medeiros M E, et al. Thermal and mechanical properties of poly (ethylene terephthalate)/lamellar zirconium phosphate nano-composites. J Appl Polymer Sci, 2006, 102: 3868–3876

    Article  Google Scholar 

  20. Trobajo C, Khainakov S A, Espina A, et al. On the synthesis of α-zirconium phosphate. Chem Mater, 2000, 12: 1787–1790

    Article  Google Scholar 

  21. Wang D Y, Liu X Q, Wang J S, et al. Preparation and characterisation of a novel fire retardant PET/ΰ-zirconium phosphate nanocomposite. Polym Degrad Stabil, 2009, 94: 544–549

    Article  Google Scholar 

  22. Li J, Shi X F, Gao F, et al. Filtration of fine particles in atmospheric aerosol with electrospinning nanofibers and its size distribution. Sci China Tech Sci, 2014, 57: 239–243

    Article  Google Scholar 

  23. Dong Y M, Tang D Y, Li C S. The impact of solvent and modifier on ZnO thin-film transistors fabricated by sol-gel process. Sci China Tech Sci, 2014, 57: 2153–2150

    Article  Google Scholar 

  24. Capitani D, Casciola M, Donnadio A, et al. High yield precipitation of crystalline a-zirconium phosphate from oxalic acid solutions. Inorg Chem, 2010, 49: 9409–9415

    Article  Google Scholar 

  25. Alberti G, Bertrami R, Casciola M, et al. Crystalline insoluble acid salts of tetravalent metals–XXI ion exchange mechanism of alkaline earth metal: Ions on crystalline ?-Zr(HPO4)(NaPO4)·5H2O. J Inorg Nuclear Chem, 1976, 38: 843–848

    Article  Google Scholar 

  26. Alberti G. In inorganic ion exchangers and adsorbents for chemical processing in the nuclear fuel cycle. IAEA-TECDOC-337, IAEA, Vienna, 1985. 195–211

    Google Scholar 

  27. Du Y B, Zhang G J, Sun P, et al. Preparation of Rh complex pillared zirconium phosphate and its catalytic performance in CH3OH carbonylation. Chinese J Catal, 1999, 2: 145–149

    Google Scholar 

  28. Clearfield A, Tindwa R M. Exchange of large cations and charged complexes with amine intercalates of zirconium phosphates. Inorg Nuclear Chem Lett, 1979, 15: 251–254

    Article  Google Scholar 

  29. Khare S, Chokhare R. Oxidation of cyclohexene catalyzed by Cu (Salen) intercalated ΰ-zirconium phosphate using dry tert-butylhydroperoxide. J Mol Catal A-Chem, 2012, 353: 138–147

    Article  Google Scholar 

  30. Khare S, Chokhare R. Synthesis, characterization and catalytic activity of Fe (Salen) intercalated a-zirconium phosphate for the oxidation of cyclohexene. J Mol Catal A-Chem, 2011, 344: 83–92

    Google Scholar 

  31. Alberti G, Casciola M, Costantino U, et al. Layered and pillared metal (IV) phosphates and phosphonates. Adv Mater, 1996, 8: 291–303

    Article  Google Scholar 

  32. Alberti G, Casciola M, Costantino U, et al. Protonic conductivity of layered zirconium phosphonates containing-SO3H groups. I. Preparation and characterization of a mixed zirconium phosphonate of composition Zr(O3P-C6H4-SO3H)0.73(O3P-CH2-OH)1.27·nH2O, with R=-C6H4—SO3H and R’=—CH2-OH. Solid State Ionics, 1992, 50: 315–322

    Article  Google Scholar 

  33. Wang L, Jiang T J, Song Y L, et al. Dopamine detection using a patch-clamp system on a planar microelectrode array electrodeposited by polypyrrole/graphene nanocomposites. Sci China Tech Sci, 2014, 57: 288–292

    Article  Google Scholar 

  34. Amicangelo J C, Leenstra W R. Zirconium arene-phosphonates: Chemical and structural characterization of 2-naphthyl-and 2-anthracenylphosphonate systems. Inorg Chem, 2005, 44: 2067–2073

    Article  Google Scholar 

  35. Boo W J, Sun L, Warren G L, et al. Effect of nanoplatelet aspect ratio on mechanical properties of epoxy nano-composites. Polymer, 2007, 48: 1075–1082

    Article  Google Scholar 

  36. Alongi J, Frache A. Flame retardancy properties of ΰ-zirconium phosphate based composites. Polym Degrad Stabil, 2010, 95: 1928–1933

    Article  Google Scholar 

  37. Sun L, Boo W J, Sun D, et al. Preparation of exfoliated epoxy/ΰ-zirconium phosphate nano-composites containing high aspect ratio nanoplatelets. Chem Mater, 2007, 19: 1749–1754

    Article  Google Scholar 

  38. Boo W J, Sun L Y, Liu J, et al. Morphology and mechanical behavior of exfoliated epoxy/ΰ-zirconium phosphate nano-composites. Compos Sci Tech, 2007, 67: 262–269

    Article  Google Scholar 

  39. Xing Y J, Qian M F, Wang G W, et al. UV irradiation induced conductivity improvement in poly(3,4-ethylenedioxythiophene): poly (styrenesulfonate) film. Sci China Tech Sci, 2014, 57: 44–48

    Article  Google Scholar 

  40. Mao H H, Lu X H, Li M S, et al. Synthesis and catalytic properties of highly ordered mesostructured silica-pillared-zirconium phosphate: Self-assembly via interlayered templating method. Appl Surface Sci, 2013, 276: 787–795

    Article  Google Scholar 

  41. Wang D Y, Liu X Q, Wang J S, et al. Preparation and characterization of a novel fire retardant PET/ΰ-zirconium phosphate nano-composite. Polym Degrad Stabil, 2008, 93: 1024–1030

    Article  Google Scholar 

  42. Sue H J, Gam K T, Bestaoui N, et al. Epoxy nano-composites based on the synthetic ΰ-zirconium phosphate layer structure. Chem Mater, 2004, 16: 242–249

    Article  Google Scholar 

  43. Zhou X Y, Ren H, Huang B L, et al. Size-dependent elastic properties of thin films: surface anisotropy and surface bonding. Sci China Tech Sci, 2014, 57: 680–691

    Article  Google Scholar 

  44. Moghbelli E, Sun L, Jiang H, et al. Scratch behavior of epoxy nano-composites containing ΰ-zirconium phosphate and core-shell rubber particles. Polym Eng Sci, 2009, 49: 483–490

    Article  Google Scholar 

  45. Bongiovanni R, Casciola M, Di Gianni A, et al. Epoxy-nano-composites containing exfoliated zirconium phosphate: Preparation via cationic photopolymerisation and physicochemical characterisation. Eur PolymJ, 2009, 45: 2487–2493

    Article  Google Scholar 

  46. Zhang R, Hu Y, Li B, et al. Studies on the preparation and structure of polyacrylamide/a-zirconium phosphate nano-composites. J Mater Sci, 2007, 42: 5641–5646

    Article  Google Scholar 

  47. Lu H, Wilkie C A. The influence of ΰ–zirconium phosphate on fire performance of EVA and PS composites. Polym Adv Tech, 2011, 22: 1123–1130

    Article  Google Scholar 

  48. Yang Y, Liu C, Wu H. Preparation and properties of poly (vinyl alcohol)/ exfoliated ΰ-zirconium phosphate nano-composite films. Polym Test, 2009, 28: 371–377

    Article  Google Scholar 

  49. Liang J J, Huang Y, Zhang F, et al. The use of graphene oxide membranes for the softening of hard water. Sci China Tech Sci, 2014, 57: 284–287

    Article  Google Scholar 

  50. Lu H, Wilkie C A, Ding M, et al. Thermal properties and flammability performance of poly (vinyl alcohol)/ΰ-zirconium phosphate nano-composites. Polym Degrad Stabil, 2011, 96: 885–891

    Article  Google Scholar 

  51. Lu H, Wilkie C A, Ding M, et al. Flammability performance of poly (vinyl alcohol) nano-composites with zirconium phosphate and layered silicates. Polym Degrad Stabil, 2011, 96: 1219–1224

    Article  Google Scholar 

  52. Du Z Z, Ai W, Zhao J F, et al. Synthesis and characterization of amphiphilic grapheme. Sci China Tech Sci, 2014, 57: 244–248

    Article  Google Scholar 

  53. Lu H, Ma Y, Wu H, et al. Flammability performance and char behavior of poly (vinyl alcohol)-zirconium phosphate-montmor-illonite composites. Polym Plast Tech Eng, 2013, 52: 827–832

    Article  Google Scholar 

  54. Huang F L, Qiu H, Guo W L, et al. Microstructures and mechanical properties of fiber cells from Echinocactus grusonii cactus spine. Sci China Tech Sci, 2014, 57: 706–712

    Article  Google Scholar 

  55. Pica M, Donnadio A, Casciola M. Starch/zirconium phosphate composite films: Hydration, thermal stability, and mechanical properties. Starch-Stärke, 2012, 64: 237–245

    Article  Google Scholar 

  56. Kashiwagi T, Du F, Douglas J F, et al. Nanoparticle networks reduce the flammability of polymer nano-composites. Nature Mater, 2005, 4: 928–933

    Article  Google Scholar 

  57. Wang L, Xu W H, Yang R, et al. Electrochemical and density functional theory investigation on high selectivity and sensitivity of exfoliated nano-zirconium phosphate toward lead (II). Analyt Chem, 2013, 85: 3984–3990

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, M., Yang, T. & Zhang, Y. A brief review on α-zirconium phosphate intercalation compounds and nano-composites. Sci. China Technol. Sci. 59, 436–441 (2016). https://doi.org/10.1007/s11431-015-5794-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5794-3

Keywords

Navigation