Skip to main content
Log in

Multi-channel phasemeter and its application in the heterodyne laser interferometry

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The mission to detect gravitational wave in space requires a not only sophisticated but also ultra-precise laser interferometric measurement system. Within a single spacecraft, tens of interferometric beat signals are generated at the same time and they also need to be processed simultaneously. In this paper, a multi-channel phasemeter which can parallelly process the signals is constructed. The test shows that a sensitivity of 2π μrad/√Hz could be achieved in the frequency range of 0.1 to 10 Hz. We also utilize the phasemeter to evaluate the performance of a heterodyne laser interferometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pitkin M, Reid S, Rowan S, et al. Gravitational wave detection by interferometry (ground and space). Living Rev Relativity, 2011, 14: 13–20

    Article  Google Scholar 

  2. Freise A, Strain K. Interferometer techniques for gravitational-wave detection. Living Rev Relativity, 2010, 13: 1–81

    Article  Google Scholar 

  3. Hughes S A. Listening to the universe with gravitational-wave astronomy. Ann Phys-New York, 2003, 303: 142–178

    Article  Google Scholar 

  4. Amaro-Seoane P, Aoudia S, Babak S, et al. Low-frequency gravitational-wave science with eLISA/NGO. Class Quantum Grav, 2012, 29: 124016

    Article  Google Scholar 

  5. Binétruy P, Bohé A, Caprini C, et al. Cosmological backgrounds of gravitational waves and eLISA/NGO: Phase transitions, cosmic strings and other sources. JCAP, 2012, 06: 027

    Article  Google Scholar 

  6. Saulson P R. Fundamentals of Interferometric Gravitational Wave Detectors. Singapore: World Scientific, 1994. 12–18

    Book  Google Scholar 

  7. Danzmann K, Rüdiger A. LISA technology-concept, status, prospects. Class Quantum Grav, 2003, 20: S1

    Article  MATH  Google Scholar 

  8. Bender P, Brillet A, Ciufolini I, et al. Lisa pre-phase a report. 2nd ed. Max-Planck-Institut fur Quantenoptik Report No. MPQ 208, Garching, Germany, 1998. 57–61

    Google Scholar 

  9. Gerberding O, Sheard B, Bykov I, et al. Phasemeter core for intersatellite laser heterodyne interferometry: modelling, simulations and experiments. Class Quantum Grav, 2013, 30: 235029

    Article  Google Scholar 

  10. Heinzel G, Wand V, Garcia A, et al. The LTP interferometer and phasemeter. Class Quantum Grav, 2004, 21: S581

    Article  Google Scholar 

  11. Cruise A M, Hoyland D, Aston S M. Implementation of the phasemeter for LISA LTP. Class Quantum Grav, 2005, 22: S165

    Article  Google Scholar 

  12. Esteban J J, Bykov I, Marín A F G, et al. Optical ranging and data transfer development for LISA. J Phys: Conf Ser, 2009, 154: 012025

    Google Scholar 

  13. Esteban J J, García A F, Eichholz J, et al. Ranging and phase measurement for LISA. J Phys: Conf Ser, 2010, 228: 012045

    Google Scholar 

  14. Wand V, Guzmán F, Heinzel G, et al. LISA phasemeter development. AIP Conf Proc, 2006, 873: 689

    Article  Google Scholar 

  15. Bykov I, Delgado J J E, Marín A F G, et al. LISA phasemeter development: Advanced prototyping. J Phys: Conf Ser, 2009, 154: 012017

    Google Scholar 

  16. Shaddock D A, Ware B, Halverson P, et al. Overview of the LISA Phasemeter. AIP Conf Proc, 2006. 873: 654–660

    Article  Google Scholar 

  17. Pollack S E, Jennrich O, Stebbins R T, et al. Status of LISA phase measurement work in the US. Class Quantum Grav, 2003, 20: S193–S199

    Article  MATH  Google Scholar 

  18. Gerberding O, Barke S, Bykov I, et al. Breadboard model of the LISA phasemeter. arXiv preprint, 2012, 1208.6418

    Google Scholar 

  19. Gong X, Xu S, Bai S, et al. A scientific case study of an advanced LISA mission. Class Quantum Grav, 2011, 28: 094012

    Article  Google Scholar 

  20. Liu H S, Dong Y H, Li Y Q, et al. The evaluation of phasemeter prototype performance for the space gravitational waves detection. Rev Sci Instrum, 2014, 85: 024503

    Article  Google Scholar 

  21. Jennrich O, Binetruy P, Colpi M, et al. NGO revealing a hidden universe: Opening a new chapter of discovery. NGO Assessment Study Report, 2011: 84–89

    Google Scholar 

  22. McNamara P W. Weak-light phase locking for LISA. Class Quantum Grav, 2005, 22: S243–S247

    Article  Google Scholar 

  23. Bender P L. Wavefront distortion and beam pointing for LISA. Class Quantum Grav, 2005, 22: S339–S346

    Article  Google Scholar 

  24. Dong Y H, Liu H S, Luo Z R, et al. Methodological demonstration of laser beam pointing control for space gravitational wave detection missions. Rev Sci Instrum, 2014, 85: 074501

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Jin.

Additional information

Contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Dong, Y., Luo, Z. et al. Multi-channel phasemeter and its application in the heterodyne laser interferometry. Sci. China Technol. Sci. 58, 746–749 (2015). https://doi.org/10.1007/s11431-015-5770-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5770-y

Keywords

Navigation