Skip to main content
Log in

A parameter-free upwind scheme for all speeds’ simulations

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

With the rapid development of the computational fluid dynamics (CFD), a parameter-free upwind scheme capable of simulating all speeds accurately and efficiently is in high demand. To achieve this goal, we present a new upwind scheme called AUSMPWM in this paper. This scheme computes the numerical mass flux as the AUSMPW+ and computes the interfacial sound speed in a different way. Also, it computes the pressure flux by limiting the dissipation if the Mach number is less than 1. Series of numerical experiments show that AUSMPWM can satisfy the following attractive properties independent of any tuning coefficient: (1) Robustness against the shock anomaly and high discontinuity’s resolution; (2) high accuracy on hypersonic heating prediction and capability to give smooth reproductions of heating profiles; (3) low dissipation at low speeds; and (4) strong grid, reconstruction scheme, and Mach number independence in low speeds’ simulations. These properties suggest that AUSMPWM is promising to be widely used to accurately and efficiently simulate flows of all speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, J D. Fundamentals of Aerodynamics. Springer: Sprinter Press, 2010

    Google Scholar 

  2. Yang C, Yang Y X, Wu Z G. Shape sensitivity analysis of flutter characteristics of a low aspect ratio supersonic wing using analytical method. Sci China Tech Sci, 2012, 55: 3370–3377

    Article  Google Scholar 

  3. Qu F, Yan C, Yu J, et al. A study of parameter-free shock capturing upwind schemes on low speeds’ issues. Sci China Tech Sci, 2014, 57: 1183–1190

    Article  Google Scholar 

  4. Jack R E, Liou M S. Low-diffusion Flux-Splitting Methods for Flows At All Speeds. AIAA, 1997

    Google Scholar 

  5. Roe P L. Approximate Riemann solvers, parameter vectors and di. erence schemes. J Comp Phys, 1981, 43: 357–372

    Article  MATH  MathSciNet  Google Scholar 

  6. van Leer B. Flux vector splitting for the euler equations. Eighth International Conference of Numerical Methods in Fluid Dynamics. Lect Notes Phys, 1982, 170: 507–512

    Article  Google Scholar 

  7. Liou M S, Steen C J. A new flux splitting scheme. J Comp Phys, 1993, 107: 23–39

    Article  MATH  Google Scholar 

  8. Weiss J M, Smith W A. Preconditioning applied to variable and constant density flows. AIAA J, 1995, 33: 2050–2057

    Article  MATH  Google Scholar 

  9. Turkel E. Preconditioning technique in computational fluid dynamics. Annu Rev Fluid Mech, 1999, 31: 385–416

    Article  MathSciNet  Google Scholar 

  10. Unrau D, Zingg D W. Viscous Airfoil Computations Using Local Preconditioning. AIAA, 1997

    Google Scholar 

  11. Kitamura K, Shima E, Nakamura Y, et al. Evaluation of euler fluxes for hypersonic heating computations. AIAA J, 2010, 48: 763–776

    Article  Google Scholar 

  12. Peery K M, Imlay S T. Blunt-Body Flow Simulations. AIAA, 1988

    Google Scholar 

  13. Yang G W, Zheng G N, Li G B. Computational methods and engineering applications of static/dynamic aeroelasticity based on CFD/CSD coupling solution. Sci China Tech Sci, 2012, 55: 2453–2461

    Article  Google Scholar 

  14. Kim K H, Rho O H. An improvement of AUSM schemes by introducing the pressure-based weight functions. Comput Fluids, 1998, 27: 311–346

    Article  MATH  MathSciNet  Google Scholar 

  15. Kitamura K, Shima E, Nakamura Y, et al. Evaluation of euler fluxes for hypersonic heating computations. AIAA J, 2010 48: 763–776

    Article  Google Scholar 

  16. Kitamura K, Shima, E. A New Pressure Flux for AUSM-Family Schemes for Hypersonic Heating Computation. AIAA, 2011

    Google Scholar 

  17. Liou M S. Mass flux schemes and connection to shock instability. J Comp Phys, 2000, 160: 623–648

    Article  MATH  Google Scholar 

  18. Li X S, Gu C W. The momentum interpolation method based on the time-marching algotithm for all-speed flows. J Comp Phys, 2010, 229: 7806–7818

    Article  MATH  Google Scholar 

  19. Kitamura K, Shima E. Improvements of simple low-dissipation AUSM against shock instabilities in consideration of interfacial speed of sound. Paper No.1283. In: Proceedings of ECCOMAS CFD 2010. Libson, Portugal, 2010

    Google Scholar 

  20. Kim K H, Rho O H. Methods for the accurate computations of hypersonic flows I. AUSMPW+ scheme. J Comp Phys, 2001, 174: 38–80

    Article  MATH  MathSciNet  Google Scholar 

  21. Chen J, Wang Z G, Wu J P, et al. Effect of the second-throat on the performance of supersonic-supersonic ejectors. Sci China Tech Sci, 2012, 55: 2530–2537

    Article  Google Scholar 

  22. Klopfer G H, Yee H. Viscous Hypersonic Shock-on-Shock Interaction on Blunt Cowl Lips. AIAA, 1988

    Google Scholar 

  23. Kitamura K, Shima E. Parameter-free simple low-dissipation AUSM-family scheme for all speeds. AIAA J, 2011, 49: 1693–1709

    Article  Google Scholar 

  24. Cao Y H, Wan K, Song Q F. Numerical simulation of parachute fluid-structure interaction in terminal descent. Sci China Tech Sci, 2012, 55: 3131–3141

    Article  Google Scholar 

  25. Kim K H, Kim C. Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows Part II: Multi-dimensional limiting process. J Comp Phys, 2005, 208: 570–615

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, F., Yan, C., Sun, D. et al. A parameter-free upwind scheme for all speeds’ simulations. Sci. China Technol. Sci. 58, 434–442 (2015). https://doi.org/10.1007/s11431-014-5759-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5759-y

Keywords

Navigation