Skip to main content
Log in

Reconstruction of plasmoid and traveling compression region in the near-Earth magnetotail

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Cluster spacecraft observed an earthward flowing plasmoid along with a travelling compression region (TCR) structure in southern plasma sheet boundary layer (PSBL) at 21:09 UT of September 19, 2001. We have reconstructed the two-dimensional topology of the magnetic field structure observed by C1 using Grad-Shafranov reconstruction method. Results show that C1 passed through part of a plasmoid, which compressed the lobe magnetic field and formed a TCR. The size of the whole plasmoid structure in X direction is estimated to be about 3 R E. Furthermore, using multi-spacecraft observations, we have found some detailed information about this structure. First, C1 observed bi-streaming electron components, which supports our suggestion that the spacecraft passed through closed field lines. Second, a small magnetic field perturbation within this plasmoid accompanied by slight decrease in electron flux suggests that a flux rope core might exist at the center of the plasmoid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Slavin J A, Smith E J, Tsurutani B T, et al. Substorm associated traveling compression regions in the distant tail: ISEE-3 Geotail observations. Geophys Res Lett, 1984, 11: 657–660

    Article  Google Scholar 

  2. Slavin J A, Smith M F, Mazur E L, et al. ISEE 3 observations of traveling compression regions in the Earth’s magnetotail. J Geophys Res, 1993, 98: 15425–15456

    Article  Google Scholar 

  3. Zong Q G, Fritz T A, Pu Z Y, et al. Cluster observations of earthward flowing plasmoid in the tail. Geophys Res Lett, 2004, 31: L18803

    Article  Google Scholar 

  4. Slavin J A, Owen C J, Dunlop M W, et al. Cluster four spacecraft measurements of small traveling compression regions in the near-tail. Geophys Res Lett, 2003, 30: 2208

    Article  Google Scholar 

  5. Slavin J A, Tanskanen, E I, Hesse M, et al. Cluster observations of traveling compression regions in the near-tail. J Geophys Res, 2005, 110: A06207

    Google Scholar 

  6. Taguchi S, Slavin J A, Kiyohara M, et al. Temporal relationship between midtail traveling compression regions and substorm onset: Evidence for near Earth neutral line formation in the late growth phase. J Geophys Res, 1998, 103: 26607–26612

    Article  Google Scholar 

  7. Taguchi S, Slavin J A, Lepping R P. IMP 8 observations of traveling compression regions in the mid-tail near substorm expansion phase onset. Geophys Res Lett, 1997, 24: 353–356

    Article  Google Scholar 

  8. Taguchi S, Slavin J A, Lepping R P. Traveling compression regions in the midtail: Fifteen years of IMP 8 observations. J Geophys Res, 1998, 103: 17641–17650

    Article  Google Scholar 

  9. Kawano H, Yamamoto T, Kokubun S, et al. A flux rope followed by recurring encounters with traveling compression regions: Geotail observations. Geophys Res Lett, 1994, 21: 2891–2894

    Article  Google Scholar 

  10. Taguchi S, Kiyohara M, Mukai T, et al. Geotail observations of north-south plasma velocity enhancements in the lobe near substorm expansion phase onset. Geophys Res Lett, 1998, 25: 4125–4128

    Article  Google Scholar 

  11. Slavin J A, Hesse M, Owen C J, et al. Dual spacecraft observations of lobe magnetic field perturbations before, during and after plasmoid release. Geophys Res Lett, 1999, 26: 2897–2900

    Article  Google Scholar 

  12. Owen C J, Slavin J A, Fazakerley A N, et al. Cluster electron observations of the separatrix layer during traveling compression regions. Geophys Res Lett, 2005, 32: L03104

    Article  Google Scholar 

  13. Amm O, Nakamura R, Frey H U, et al. Substorm topology in the ionosphere and magnetosphere during a flux rope event in the magnetotail. Ann Geophys, 2006, 24: 735–750

    Article  Google Scholar 

  14. Beyene S, Owen C J, Walsh A P, et al. Cluster observations of a transient signature in the magnetotail: Implications for the mode of reconnection. Ann Geophys, 2011, 29: 2131–2146

    Article  Google Scholar 

  15. Imber S M, Slavin J A, Auster H U, et al. A THEMIS survey of flux ropes and traveling compression regions: Location of the near-Earth reconnection site during solar minimum. J Geophys Res, 2011, 116: A02201

    Google Scholar 

  16. Sonnerup B U Ö, Hasegawa H, Teh W L, et al. Grad-Shafranov reconstruction: An overview. J Geophys Res, 2006, 111: A09204

    Google Scholar 

  17. Sonnerup B U Ö, Guo M. Magnetopause transects. Geophys Res Lett, 1996, 23: 3679–3682

    Article  Google Scholar 

  18. Hau L N and Sonnerup B U Ö. Two-dimensional coherent structures in the magnetopause: Recovery of static equilibria from single-spacecraft data. J Geophys Res, 1999, 104: 6899–6917

    Article  Google Scholar 

  19. Hasegawa H, Sonnerup B U Ö, Dunlop M W. et al. Reconstruction of two-dimensional magnetopause structures from Cluster observations: verification of method, Ann Geophys, 2004, 22: 1251–1266

    Article  Google Scholar 

  20. Hasegawa H, Sonnerup B U Ö, Klecker B, et al. Optimal reconstruction of magnetopause structures from Cluster data. Ann Geophys, 2005, 23: 973–982

    Article  Google Scholar 

  21. Hasegawa H, Sonnerup B U Ö, Owen C J, et al. The structure of flux transfer events recovered from Cluster data. Ann Geophys, 2006, 24: 603–618

    Article  Google Scholar 

  22. Hasegawa H, Nakamura R, Fujimoto M, et al. Reconstruction of a bipolar magnetic signature in an earthward jet in the tail: Flux rope or 3D guide-field reconnection? J Geophys Res, 2007, 112: A11206

    Article  Google Scholar 

  23. Hu Q, Sonnerup B U Ö. Reconstruction of magnetic clouds in the solar wind: Orientations and configurations. J Geophys Res, 2002, 107: SSH10-1–SSH10-5

    Google Scholar 

  24. Khrabrov A V, Sonnerup B U Ö. deHoffmann-Teller Analysis. In: Paschmann G and Daly P W. Analysis Methods for Multi-Spacecraft Data. Switzerland: ISSI, 221–248

  25. Sonnerup B U Ö, Cahill L J. Magnetopause structure and attitude from Explorer 12 observations. J Geophys Res, 1967, 72: 171–183

    Article  Google Scholar 

  26. Sonnerup B U Ö, Scheible M. Minimum and maximum variance analysis. In: Paschmann G and Daly P W. Analysis Methods for Multi-Spacecraft Data. Switzerland: ISSI, 185–220

  27. Rème H, Aoustin C, Bosqued J M, et al. First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann Geophys, 2001, 19: 1303–1354

    Article  Google Scholar 

  28. Balogh A, Dunlop M W, Cowley S W H, et al. The cluster magnetic field investigation. Space Sci Rev, 1997, 79: 65–101

    Article  Google Scholar 

  29. Zheng H, Fu S Y, Zong Q G, et al. Observations of ionospheric electron beams in the plasma sheet. Phys Rev Lett, 2012, 109: 205001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QiuGang Zong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Zong, Q., Vogiatzis, I. et al. Reconstruction of plasmoid and traveling compression region in the near-Earth magnetotail. Sci. China Technol. Sci. 58, 330–337 (2015). https://doi.org/10.1007/s11431-014-5747-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5747-2

Keywords

Navigation