Skip to main content
Log in

Algebraic solution of differential geometric guidance command and time delay control

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

According to the three-dimensional geometry of the engagement, the explicit algebraic expression of differential geometric guidance command (DGGC) is proposed. Compared with the existing solutions, the algebraic solution is much simpler and better for the further research of the characteristics of DGGC. Time delay control (TDC) is a useful method to tackle the uncertainty problem of a control system. Based on TDC, taking the target maneuvering acceleration as a disturbance, the estimation algorithm of the target maneuvering acceleration is presented, which can be introduced in DGGC to improve its performance. Then, the augmented DGGC (ADGGC) is obtained. The numerical simulation of intercepting a high maneuvering target is conducted to demonstrate the effectiveness of ADGGC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murtaugh S A, Criel H E. Fundamentals of proportional navigation. IEEE Spectr, 1966, 3: 75–85

    Article  Google Scholar 

  2. Zarchan P. Tactical and Strategic Missile Guidance. 4th ed. New York: AIAA Inc., 2002

    Google Scholar 

  3. Sun X F, Gu L X, Gong C L. Dynamics of a deflectable-nose missile. Sci China Tech Sci, 2012, 55: 3483–3494

    Article  Google Scholar 

  4. Wu Z G, Chu L F, Yuan R Z, et al. Studies on aeroservoelasticity semi-physical simulation test for missiles. Sci China Tech Sci, 2012, 55: 2482–2488

    Article  Google Scholar 

  5. Xu S K, Liu J H, Wei X Z, et al. Wideband electromagnetic characteristics modeling and analysis of missile targets in ballistic midcourse. Sci China Tech Sci, 2012, 55: 1655–1666

    Article  Google Scholar 

  6. Shneydor N A. Missile Guidance and Pursuit-Kinematics, Dynamics and control. Chichester: Horwood Publishing, 1998

    Book  Google Scholar 

  7. Chiou Y C, Kuo C Y. Geometric approach to three dimensional missile guidance problems. J Guid Contr Dynam, 1998, 21: 335–341

    Article  Google Scholar 

  8. Kuo C Y, Chiou Y C. Geometric analysis of missile guidance command. IEEE P-Contr Theor Ap, 2000, 147: 205–211

    Article  Google Scholar 

  9. Kuo C Y, Soetanto D, Chiou Y C. Geometric analysis of flight control command for tactical missile guidance. IEEE T Contr Syst T, 2001, 9: 234–243

    Article  Google Scholar 

  10. Li C Y, Jing W X. Application of PID controller to 2D differential geometric guidance problem. J Contr Theor Ap, 2007, 5: 285–290

    Article  MathSciNet  Google Scholar 

  11. Li C Y, Jing W X. Fuzzy PID controller for 2D differential geometric guidance and control problem. IET Contr Theor Ap, 2007, 1: 564–571

    Article  Google Scholar 

  12. Li C Y, Jing W X, Wang H, et al. Iterative solution to differential geometric guidance problem. Aircr Eng Aerosp Tec, 2006, 78: 415–425

    Article  Google Scholar 

  13. Li C Y, Jing W X, Wang H, et al. A novel approach to 2D differential geometric guidance problem. T Jpn Soc Aeronaut S, 2007, 50: 34–40

    Article  Google Scholar 

  14. Li C Y, Jing W X, Wang H, et al. Gain-varying guidance algorithm using differential geometric guidance command. IEEE T Aeros Electr Syst, 2010, 46: 725–736

    Article  Google Scholar 

  15. Ye J K, Lei H M, Xue D F, et al. Nonlinear differential geometric guidance for maneuvering target. J Syst Eng Elect, 2012, 23: 752–760

    Article  Google Scholar 

  16. Li K B, Chen L, Bai X Z. Differential geometric modeling of guidance problem for interceptors. Sci China Tech Sci, 2011, 54: 2283–2295

    Article  MATH  Google Scholar 

  17. Li K B, Chen L, Tang G J. Improved differential geometric guidance commands for endoatmospheric interception of high-speed targets. Sci China Tech Sci, 2013, 56: 518–528

    Article  Google Scholar 

  18. Talole S E, Phadke S B, Singh R K. Predictive homing guidance using time delay control. In: AIAA Guidance, Navigation, and Control Conference and Exhibit. San Francisco, California, 2005

    Google Scholar 

  19. Talole S E, Ghosh A, Phadke S B. Proportional navigation guidance using predictive and time delay control. Contr Eng Pract, 2006, 14: 1445–1453

    Article  Google Scholar 

  20. Hecht C. Homing guidance using angular acceleration of the line of sight. AIAA-91-2701-CP, 1991: 856–869

    Google Scholar 

  21. Tang X X, Yu B S, Bei C. Application of angular acceleration guidance of the line of sight in TBM interceptors (in Chinese). J Syst Eng Electr?, 2001, 23: 64–66

    Google Scholar 

  22. Struik D J. Lectures on Classical Differential Geometry. New York: Dover, 1988. 10–20

    MATH  Google Scholar 

  23. Chen L, Li K B, Liang Y G. Dimension-reduction method and error analysis of three-dimensional interception problem (in Chinese). Sci China Tech Sci, 2013, 43: 623–635

    Google Scholar 

  24. Li K B, Chen L, Zhang T T. Ideal proportional navigation for exoatmospheric interception. Chin J Aeronautics, 2013, 26: 976–985

    Article  Google Scholar 

  25. Ben-Asher J Z, Farber N, Levinson S. New proportional navigation law for ground-to-air systems. J Guid Contr Dynam, 2003, 26: 822–825

    Article  Google Scholar 

  26. Zhou D, Mu C D, Xu W L. Adaptive sliding mode guidance of a homing missile. J Guid Control Dynam, 1999, 22: 589–594

    Article  Google Scholar 

  27. Liu L J, Shen Y. Three-dimension h infinity guidance law and capture region analysis. IEEE T Aeros Electr Syst, 2012, 48: 419–429

    Article  Google Scholar 

  28. Yeh F K, Cheng, K Y, Fu L C. Variable structure based nonlinear missile guidance/autopilot design for a direct hit with thrust vector control. IEEE T Contr Syst T, 2004, 12: 944–949

    Article  Google Scholar 

  29. Youcef-Toumi K, Ito O. A time delay controller for systems with unknown dynamics. J Dyn Syst-T Asme, 1990, 112: 113–142

    Article  Google Scholar 

  30. Youcef-Toumi K, Reddy S. Analysis of linear time invariant systems with time delay. J Dyn Syst-T Asme, 1992, 114: 544–555

    Article  MATH  Google Scholar 

  31. Ge J H, Xu J. Hopf bifurcation and chaos in an inertial neuron system with coupled delay. Sci China Tech Sci, 2013, 56: 2299–2309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Chen, L. & Tang, G. Algebraic solution of differential geometric guidance command and time delay control. Sci. China Technol. Sci. 58, 565–573 (2015). https://doi.org/10.1007/s11431-014-5730-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5730-y

Keywords

Navigation