Science China Technological Sciences

, Volume 57, Issue 12, pp 2335–2343 | Cite as

Generation of electricity from CO2 mineralization: Principle and realization

  • HePing Xie
  • YuFei Wang
  • Yang He
  • MaLing Gou
  • Tao Liu
  • JinLong Wang
  • Liang Tang
  • Wen Jiang
  • Ru Zhang
  • LingZhi Xie
  • Bin Liang
Article

Abstract

Current CO2 reduction and utilization technologies suffer from high energy consuming. Thus, an energy favourable route is in urgent demanding. CO2 mineralization is theoretically an energy releasing process for CO2 reduction and utilization, but an approach to recovery this energy has so far remained elusive. For the first time, here we proposed the principle of harvesting electrical energy directly from CO2 mineralization, and realized an energy output strategy for CO2 utilization and reduction via a CO2-mineralization fuel cell (CMFC) system. In this system CO2 and industrial alkaline wastes were used as feedstock, and industrial valuable NaHCO3 was produced concomitantly during the electricity generation. The highest power density of this system reached 5.5 W/m2, higher than many microbial fuel cells. The maximum open circuit voltage reached 0.452 V. Moreover, this system was demonstrated viable to low concentration CO2 (10%) and other carbonation process. Thus, the existing of an energy-generating and environmentally friendly strategy to utilize CO2 as a supplement to the current scenario of CO2 emission control has been demonstrated.

Keywords

CO2 mineralization electricity generation sodium bicarbonates CO2 utilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11431_2014_5727_MOESM1_ESM.pdf (1 mb)
Supplementary material, approximately 1.02 MB.

References

  1. 1.
    Myers S S, Zanobetti A, Kloog I, et al. Increasing CO2 threatens human nutrition. Nature, 2014, 510: 139–143CrossRefGoogle Scholar
  2. 2.
    Lacis A G., Schmidt A, Rind D, et al. Atmospheric CO2: Principal control knob governing earth’s temperature. Science, 2010, 330: 356–359CrossRefGoogle Scholar
  3. 3.
    Yang Z, Zhang J, Kintner-Meyer M C, et al. Electrochemical energy storage for green grid. Chem Rev, 2011, 111: 3577–3613CrossRefGoogle Scholar
  4. 4.
    Kramer G J, Haigh M. No quick switch to low-carbon energy. Nature, 2006, 462: 568–569CrossRefGoogle Scholar
  5. 5.
    Haszeldine R S. Carbon capture and storage: how green can black be? Science, 2009, 325: 1647–1652CrossRefGoogle Scholar
  6. 6.
    Xie H, Li X, Fang Z, et al. Carbon geological utilization and storage in China: Current status and perspectives. Acta Geotech, 2014, 9: 7–27CrossRefGoogle Scholar
  7. 7.
    Aresta M. Carbon Dioxide as Chemical Feedstock. Weinheim: Wiley-VCH, 2010CrossRefGoogle Scholar
  8. 8.
    Nakata K, Ozaki T, Terashima C, et al. High-yield electrochemical production of formaldehyde from CO2. Angew Chem Int Ed, 2014, 125: 1–5Google Scholar
  9. 9.
    Rosen B A, Salehi-Khojin A, Thorson M R, et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science, 2011, 334: 643–644CrossRefGoogle Scholar
  10. 10.
    Seifritz W. CO2 disposal by means of silicates. Nature, 1990, 345: 486CrossRefGoogle Scholar
  11. 11.
    Xie H, Wang Y, Ju Y, et al. Simultaneous mineralization of CO2 and recovery of soluble potassium using earth-abundant potassium feldspar. Chin Sci Bull, 2013, 58: 128–132CrossRefGoogle Scholar
  12. 12.
    Falkowski P, Scholes R J, Boyle E, et al. The global carbon cycle: A test of our knowledge of earth as a system. Science, 2000, 290: 291–196CrossRefGoogle Scholar
  13. 13.
    Aresta M, Dibenedetto A, Angelini A. Catalysis for the valorization of exhaust carbon: From CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev, 2014, 114: 1709–1751CrossRefGoogle Scholar
  14. 14.
    Faverjon F, Durand G, Rakib M. Regeneration of hydrochloric acid and sodium hydroxide from purified sodium chloride by membrane electrolysis using a hydrogen diffusion anode-membrane assembly. J Membr Sci, 2006, 285: 323–330CrossRefGoogle Scholar
  15. 15.
    Xie H, Wang Y, Chu W, at al. Mineralization of flue gas CO2 with coproduction of valuable magnesium carbonate by means of magnesium chloride. Chin Sci Bull, 2014, 59: 2882–2889CrossRefGoogle Scholar
  16. 16.
    Hamelers H V M, Schaetzle O, Paz-García J M, et al. Harvesting energy from CO2 Emissions. Environ Sci Technol Lett, 2014, 1: 31–35CrossRefGoogle Scholar
  17. 17.
    Bobicki E R, Liu Q, Xu Z, at al. Carbon capture and storage using alkaline industrial wastes. Prog Energy Combust Sci, 2012, 38: 302–320CrossRefGoogle Scholar
  18. 18.
    Kirchofer A, Becher A, Brandt A, at al. CO2 mitigation potential of mineral carbonation with industrial alkalinity sources in the united states. Environ Sci Technol, 2013, 47: 7548–7554Google Scholar
  19. 19.
    Said A, Mattila H P, Jarvinen M. Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2. Appl Energy, 2013, 112: 765–771CrossRefGoogle Scholar
  20. 20.
    Huntzinger N, Gierke J S, Kawatra S K, et al. Carbon dioxide sequestration in cement kiln dust through mineral carbonation. Environ Sci Technol, 2009, 43: 1986–1992CrossRefGoogle Scholar
  21. 21.
    Botheju D, Glarborg P, Tokheim L A. NOx reduction using amine reclaimer wastes (ARW) generated in post combustion CO2 capture. Int J Greenh Gas Con, 2012, 10: 33–45CrossRefGoogle Scholar
  22. 22.
    Chen Y, Sequeira C, Allen T, at al. Electrocatalytic abilities of hydrogen storage alloy as anode electrocatalyst of alkaline fuel cell. J Alloys Compd, 2005, 404: 661–664CrossRefGoogle Scholar
  23. 23.
    Li Y, Wang H, Xie L, at al. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc, 2011, 133: 7296–7299CrossRefGoogle Scholar
  24. 24.
    Mink J E, Rojas J P, Logan B E, et al. Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 μL) microbial fuel cell. Nano Lett, 2012, 12: 791–795CrossRefGoogle Scholar
  25. 25.
    Kong W, Guo Q, Wang X, at al. Electricity generation from wastewater using an anaerobic fluidized bed microbial fuel cell. Ind Eng Chem Res, 2011, 50: 12225–12232CrossRefGoogle Scholar
  26. 26.
    Bond R, Holmes D E, Tender L M, at al. Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 2002, 295: 483–485CrossRefGoogle Scholar
  27. 27.
    Cusick R D, Kim Y, Logan B E. Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells. Science, 2012, 335: 1474–1477CrossRefGoogle Scholar
  28. 28.
    Logan B E, Elimelech M. Membrane-based processes for sustainable power generation using water. Nature, 2012, 488: 313–319CrossRefGoogle Scholar
  29. 29.
    International Energy Agency. World energy outlook 2013: Renewable energy outlook. Paris: OECD/IEA, 2013Google Scholar
  30. 30.
    Huijgen W J J, Comans R N J. Carbonation of steel slag for CO2 sequestration: leaching of products and reaction mechanisms. Environ Sci Technol, 2006, 40: 2790–2796CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • HePing Xie
    • 1
    • 2
  • YuFei Wang
    • 1
    • 2
  • Yang He
    • 3
  • MaLing Gou
    • 4
  • Tao Liu
    • 1
    • 5
  • JinLong Wang
    • 1
    • 5
  • Liang Tang
    • 1
    • 5
  • Wen Jiang
    • 1
  • Ru Zhang
    • 2
  • LingZhi Xie
    • 1
  • Bin Liang
    • 1
    • 5
  1. 1.Center of CO2 Mineralization and CCUSSichuan UniversityChengduChina
  2. 2.College of Water Resource & HydropowerSichuan UniversityChengduChina
  3. 3.Institute for Nanobiomedical Technology and Membrane Biology, Regenerative Medicine Research Center, West China Hospital, West China Medical SchoolSichuan UniversityChengduChina
  4. 4.State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, Wets China HospitalSichuan UniversityChengduChina
  5. 5.College of Chemical EngineeringSichuan UniversityChengduChina

Personalised recommendations