Skip to main content
Log in

Analysis of the ionospheric variability based on wavelet decomposition

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this work, the ionospheric variability is analyzed by applying the wavelet decomposition technique to the noontime foF2, F10.7, interplanetary magnetic field (IMF) Bz, Ap, and lower thermospheric temperature at pressure of 10−4 hPa in 2002. Results show that the variance of periodic oscillations in the ionosphere is largest in the 2–4-day period and declines with the increase of the period. The maximum variance of the periodic oscillations in solar irradiation is in the 16–32-day period. For geomagnetic activities, most of the variance is about equally distributed on intervals of periods shorter than 32 days. Variance distributions of IMF Bz and lower thermospheric temperature are similar to those of the ionosphere. They show the maximum in the 2–4-day period and decline with the increase of the period. By analyzing the distributions of the variances, the potential connections between the ionosphere and the external sources are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rishbeth H, Mendillo M. Patterns of F2-layer variability. J Atmos Solar-Terr Phys, 2001, 63: 1661–1680

    Article  Google Scholar 

  2. Forbes J M, Palo S E, Zhang X. Variability of the ionosphere. J Atmos Solar-Terr Phys, 2000, 62: 685–693

    Article  Google Scholar 

  3. Wu F, Hao Y Q, Zhang D H. Particle bursts in the inner radiation belt related to global lightning activity. Sci China Tech Sci, 2013, 56: 2658–2667

    Article  Google Scholar 

  4. Liu L, Wan W, Ning B, et al. Solar activity variations of the ionospheric peak electron density. J Geophys Res: Space Phys, 2006, 111: A08304

    Google Scholar 

  5. Zhang D H, Mo X H, Cai L, et al. Impact factor for the ionospheric total electron content response to solar flare irradiation. J Geophys Res: Space Phys, 2011, 116: A04311

    Google Scholar 

  6. Zhang D H, Cai L, Ercha A, et al. Statistical studies on the excess peak flux in soft X-rays and EUV bands from solar flares. Sol Phys, 2012, 280: 183–196

    Article  Google Scholar 

  7. Hapgood M A, Lockwood M, Bowe G A, et al. Variability of the interplanetary medium at 1 au over 24 years: 1963–1986. Planet Space Sci, 1991, 39: 411–423

    Article  Google Scholar 

  8. Yan Q, Shi L Q, Liu S Q. Effect of seed electron injection on chorus-driven acceleration of radiation belt electrons. Sci China Tech Sci, 2013, 56: 492–498.

    Article  Google Scholar 

  9. Duan A Y, Cao J B, Ma Y D, et al. Cluster observations of large-scale southward movement and dawnward-duskward flapping of Earth’s magnetotail current sheet. Sci China Tech Sci, 2013, 56: 194–204

    Article  Google Scholar 

  10. Karpachev A T, Deminova G F, Pulinets S A. Ionospheric changes in response to IMF variations. J Atmos Terr Phys, 1995, 57: 1415–1432

    Article  Google Scholar 

  11. Tulunay Y. Interplanetary magnetic field and its possible effects on the mid-latitude ionosphere II. Annali Di Geofisica, 1994, 37: 193–200

    Google Scholar 

  12. Tulunay Y. Variability of mid-latitude ionospheric foF2 compared to IMF-polarity inversions. Adv Space Res, 1995, 15: 35–44

    Article  Google Scholar 

  13. Tulunay Y. Interplanetary magnetic field and its possible effects on the mid-latitude ionosphere III. Annali Di Geofisica, 1996, 34: 853–862

    Google Scholar 

  14. Bremer J, Lastovicka J, Tulunay Y. Influence of the interplanetary magnetic field on the variability of the mid-latitude F2-layer. Ann Geophys-Italy, 1996, 39: 721–727

    Google Scholar 

  15. Denton M H, Ulich T, Turunen E. Modification of midlatitude ionospheric parameters in the F2 layer by persistent high-speed solar wind streams. Space Weather, 2009, 7: S04006

    Article  Google Scholar 

  16. Lei J, Thayer J P, Forbes J M, et al. Ionosphere response to solar wind high-speed streams. Geophys Res Lett, 2008, 35: L19105

    Article  Google Scholar 

  17. Pancheva D, Mukhtarov P, Andonov B, et al. Planetary waves observed by TIMED/SABER in coupling the stratosphere-mesosphere-lower thermosphere during the winter of 2003/2004: Part 1-Comparison with the UKMO temperature results. J Atmos Solar-Terr Phys, 2009, 71: 61–74

    Article  Google Scholar 

  18. Pancheva D, Mukhtarov P, Andonov B, et al. Planetary waves observed by TIMED/SABER in coupling the stratosphere-mesosphere-lower thermosphere during the winter of 2003/2004: Part 2-Altitude and latitude planetary wave structure. J Atmos Solar-Terr Phys, 2009, 71: 75–87

    Article  Google Scholar 

  19. Mo X H, Zhang D H, Goncharenko L P, et al. Quasi-16-day periodic meridional movement of the equatorial ionization anomaly. Ann Geophys-Germany. Copernicus GmbH, 2014, 32: 121–131

    Google Scholar 

  20. Hao Y Q, Xiao Z, and Zhang D H. Teleseismic magnetic effects

  21. (TMDs) of 2011 Tohoku earthquake, J Geophys Res: Space Phys, 2013, 118, 3914–3923

  22. Kazimirovsky E, Herraiz M, De la Morena B A. Effects on the iono-sphere due to phenomena occurring below it. Surv Geophys, 2003, 24: 139–184

    Article  Google Scholar 

  23. Xiao Z, Xiao S G, Hao Y Q, et al. Morphological features of ionospheric response to typhoon. J Geophys Res: Space Phys, 2007, 112: A04304

    Google Scholar 

  24. Borries C, Jakowski N, Jacobi C. Observation of large scale waves in the thermosphere-ionosphere system. In: Proceedings of the ESA’s Second SWARM International Science Meeting, 2009. 1720178

    Google Scholar 

  25. Mukhtarov P, Andonov B, Borries C, et al. Forcing of the ionosphere from above and below during the Arctic winter of 2005/2006. J Atmos Solar-Terr Phys, 2010, 72: 193–205

    Article  Google Scholar 

  26. Altadill D, Sole J G, Apostolov E M. First observation of quasi-2-day oscillations in ionospheric plasma frequency at fixed heights. Ann Geophys-Germany, 1998, 16: 609–617

    Article  Google Scholar 

  27. Forbes J M, Zhang X. Quasi 2-day oscillation of the ionosphere: A statistical study. J Atmos Solar-Terr Phys, 1997, 59: 1025–1034

    Article  Google Scholar 

  28. Laštovička J. Forcing of the ionosphere by waves from below. J Atmos Solar-Terr Phys, 2006, 68: 479–497

    Article  Google Scholar 

  29. Daubechies I. Ten Lectures on Wavelets. Philadelphia: Society for Industrial and Applied Mathematics, 1992

    Book  MATH  Google Scholar 

  30. Dudok de Wit T, Kretzschmar M, Lilensten J, et al. Finding the best proxies for the solar UV irradiance. Geophys Res Lett, 2009, 36

  31. Mallat S. A Wavelet Tour of Signal Processing. Burlington, MA: Academic Press, 1999

    MATH  Google Scholar 

  32. Ma R, Xu J, Wang W, et al. The effect of ∼27 day solar rotation on ionospheric F2 region peak densities (NmF2). J Geophys Res: Space Phys, 2012, 117: A03303

    Google Scholar 

  33. Xiong J, Wan W, Ning B, et al. Planetary wave-type oscillations in the ionosphere and their relationship to mesospheric/lower thermospheric and geomagnetic disturbances at Wuhan (30.6 N, 114.5 E). J Atmos Solar-Terr Phys, 2006, 68: 498–508

    Article  Google Scholar 

  34. Forbes J M, Leveroni S. Quasi 16-day oscillation in the ionosphere. Geophys Res Lett, 1992, 19: 981–984

    Article  Google Scholar 

  35. Pancheva D V, Mitchell N J. Planetary waves and variability of the semidiurnal tide in the mesosphere and lower thermosphere over Esrange (68°N, 21°E) during winter. J Geophys Res: Space Phys, 2004, 109: A08307

    Google Scholar 

  36. Xu J, Wang W, Gao H. The longitudinal variation of the daily mean thermospheric mass density. J Geophys Res: Space Phys, 2013, 118: 515–523

    Article  Google Scholar 

  37. Xu J, Smith A K, Wang W, et al. An observational and theoretical study of the longitudinal variation in neutral temperature induced by aurora heating in the lower thermosphere. J Geophys Res: Space Phys, 2013, 118: 7410–7425

    Article  Google Scholar 

  38. Fuller-Rowell T J, Codrescu M V, Moffett R J, et al. Response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res: Space Phys (1978–2012), 1994, 99: 3893–3914

    Article  Google Scholar 

  39. Field P R, Rishbeth H. The response of the ionospheric F2-layer to geomagnetic activity: an analysis of worldwide data. J Atmos Solar-Terr Phys, 1997, 59: 163–180

    Article  Google Scholar 

  40. Ding Y H, He Z G, Zhang Z L, et al. Influence of wave normal angle on gyroresonance between chorus waves and outer radiation belt electrons. Sci China Tech Sci, 2013, 56: 2681–2689

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DongHe Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Zhang, D., Liu, Y. et al. Analysis of the ionospheric variability based on wavelet decomposition. Sci. China Technol. Sci. 58, 174–180 (2015). https://doi.org/10.1007/s11431-014-5709-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5709-8

Keywords

Navigation