Skip to main content
Log in

The quantitative evaluation of application of hyperspectral data based on multi-parameters joint optimization

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In order to evaluate the mineral identification of the hyperspectral data and make a trade-off of the imaging system parameters, a quantitative evaluation approach based on the multi-parameters joint optimization is proposed for the hyperspectral remote sensing. In the proposed approach, the mineral identification is defined as the number of the minerals identified and the key imaging parameters employed include ground sample distance (GSD) and spectral resolution (SR). Certain limitations are found among parameters that are used for analyzing the imaging processes. The constraints include the industrial manufacturing level, application requirements and the quantitative relationship among the GSD, the SR and the signal-to-noise ratio (SNR). Regression analysis is used to investigate the quantitative relationship between the mineral identification and the key imaging system parameters. Then, an optimization model for the trade-off study is established by combining the regression equation with the constraints. The airborne hyperspectral image collected by Hymap is applied to evaluate the performance of the proposed approach. The experimental results reveal that the approach can achieve the evaluation of the mineral identification and the trade-off of key imaging system parameters. The error of the prediction is within one kind of mineral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao H L, Gu X F, Y T, et al. HJ-1A HSI on-orbit radiometric calibration and validation research. Sci China Tech Sci, 2010, 53: 3119–3228

    Article  Google Scholar 

  2. Wang K, Gu X F, Yu T, et al. Classification of hyperspectral remote sensing images using frequency spectrum similarity. Sci China Tech Sci, 2013, 56: 980–988

    Article  Google Scholar 

  3. Zhang J H, Xu Y, Yao F M, et al. Advances on estimation methods of vegetation water content based on optical remote sensing techniques. Sci China Tech Sci, 2010, 53: 1159–1167

    Article  Google Scholar 

  4. Heiden U, Segl K, Roessner S, et al. Ecological evaluation of urban biotope types using airbone spectral hymap data. In: Remote Sensing and Data fusion over Urban Areas, Berlin, Germany, 2003. 18–22

    Google Scholar 

  5. Taranik J V, Moiiat D A, Elvidge C D. Hyperspectral technology for geologic application. In: Geoscience and Remote Sensing Symposium, Tokyo, 1993, 2: 917–920

    Google Scholar 

  6. Wania A, Weber C. Hyperspectral imagery and urban green observation. In: Urban Remote Sensing Joint event, Pairs, 2007. 1–8

    Google Scholar 

  7. Kerekes J P, Landgrebe D A. Parameter trade-offs for imaging spectroscopy systems. IEEE Transactions On Geoscience And Remote Sensing, 1991, 29 (1): 57–65

    Article  Google Scholar 

  8. Stefanou S, Kerekes J P. Image-derived prediction of spectral image utility for target detection applications. IEEE Transactions On Geoscience And Remote Sensing, 2010, 48 (4): 1827–1833

    Article  Google Scholar 

  9. Simmons R E, Elder T D, Stewart D J, et al. General Spectral Utility Metric for Spectral Imagery. In: Shen S S, Lewis P E. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, Orlando, Florida, 2005, 5806: 457–468

    Article  Google Scholar 

  10. Sweet J, Granahan J, Sharp M. An objective standard for hyperspectral image quality. In: Proc. of AVIRIS Workshop, 2000

    Google Scholar 

  11. Kerekes J P, Cisz A P, Simmons R E. A comparative evaluation of spectral quality metrics for hyperspectral imagery. In: Shen S S, Lewis P E. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, Orlando, Florida, 2005, 5806: 469–480

    Article  Google Scholar 

  12. Kerekes J P, Hsu S. Spectral quality metrics for VNIR and SWIR hyperspectral imagery. Proc. Of SPIE, 2004, 5425: 549–556

    Article  Google Scholar 

  13. Kerekes J P, David W M, Paul L, et al. Comparisons between spectral quality metrics and analyst performance in hyperspectral target detection. In: Shen S S, Lewis P E. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X, Orlando, Florida, 2006, 6233: 62330W-1–62330W-9

    Article  Google Scholar 

  14. Shen S. Spectral quality equation relating collection parameters to object/anomaly detection performance. In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery IX, Orlando, Florida, 2003, 5093: 29–36

    Article  Google Scholar 

  15. Schott J R. Remote Sensing. New York: Oxford University Press, 2007. 57–61

    Google Scholar 

  16. Berk A, Bernstein L S, Robertson D C. MODTRAN: AModerate ResolutionModel for LOWTRAN 7. iSpectral Sciences Inc, 1987

    Google Scholar 

  17. Cota S A, Bell J T, Boucher R H, et al. PICASSO: an end-to-end image simulation tool for space and airborne imaging systems, In: Philip E. Ardanuy; Jeffery J. Puschell, Remote Sensing System Engineering, San Diego, California, 2010, 4: 043535

    Google Scholar 

  18. Nischan M L, Kerekes J P, Baum J E. Analysis of HYDICE Noise Characteristics and Their Impact on Subpixel Object Detection. In: Imaging Spectrometry V, Denver, CO. 1999, 3753: 112–123

    Article  Google Scholar 

  19. Kerekes J P, Landgrebe D. A noise taxonomy for remote sensing system. In: Proc of IGARSS, New York, 1987, 2: 903–908

    Google Scholar 

  20. Fiete R D, Tantalo T. Comparison of SNR image quality metrics for remote sensing systems. Opt Eng, 2001, 40(4): 574–584

    Article  Google Scholar 

  21. Holbert E. Development and verification of the spectral performance model of a spatially modulated imaging fourier transform spectrometer. Melborne F L. USE: Florida Institute of Technology, 1994

    Google Scholar 

  22. Kruse F A, Sandra P L. Improving multispectral mapping by spectral modeling with hyperspectral signatures. J Appl Remote Sensing, 2009, 3(1): 033504

    Article  Google Scholar 

  23. Villa A, Chanussot J, Jutten C, el al. On the use of ICA for hyperspectral image analysis. In: Proc of IGARSS, 2009, 4: IV-97–IV-100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Na Li or HuiJie Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Huang, P., Zhao, H. et al. The quantitative evaluation of application of hyperspectral data based on multi-parameters joint optimization. Sci. China Technol. Sci. 57, 2249–2255 (2014). https://doi.org/10.1007/s11431-014-5689-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5689-8

Keywords

Navigation