Skip to main content
Log in

Influence of thermal effects on elastohydrodynamic (EHD) lubrication behavior at high speeds

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This paper describes a study of point contact elastohydrodynamic (EHD) lubrication behavior at high speeds (up to 20 m s−1). Central film thicknesses were measured by optical interferometry device. The influence of slide-roll ratio and operating temperature on the central film thickness was determined. The influence of thermal effects on the reduction of film thickness was discussed via the analysis of numerical simulation method considering thermal effects. Subsequently, the experimental data was used to amend a set of unified parameters for the thermal corrections for different types of oil at high speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

L :

Thermal loading parameter

E 1,E 2 :

Elastic modulus of ball and disc (Pa)

E′:

Reduced modulus (Pa)

υ 1, υ 2 :

Poisson ratio of disc and ball

R x :

Radius of ball (m)

t :

Temperature (K)

t 0 :

Operating temperature (K)

ρ, ρ 1, ρ 2 :

Density of oil, glass disc and steel ball (kg m−3)

k, k 1, k 2 :

Thermal conductivity of oil, glass disc and steel-ball (W m−1 K−1)

c, c 1, c 2 :

Specific heat of oil, glass disc and steel ball (W m−1 K−1)

η :

Dynamic viscosity (Pa s)

η 0 :

Ambient viscosity (Pa s)

α :

Barus viscosity-pressure coefficient (Pa−1)

S 0 :

Roelands viscosity-temperature coefficient (K−1)

SRR :

Slide-roll ratio SRR=2((u 1u 2)/(u 1u 2)

h :

Film thickness (nm)

p :

Film pressure (Pa)

pH :

Maximum Herzian pressure (Pa)

u :

Lubricant entrainment speed, u=(u 1 +u 2)/2

u 1,u 2 :

Surface velocities of disc and ball, u 1>u 2 (m s−1)

w :

Load (N)

x :

Coordinate along the entrainment speed (m)

y :

Coordinate perpendicular to the entrainment speed (m)

z :

Coordinate along the film thickness (m)

H :

Dimensionless film thickness, H=hR x /B 2

P :

Dimensionless pressure, P=p/p H

G :

Dimensionless material parameter, G=αE′

U :

Dimensionless velocity parameter, U=η 0 u/E′R x

W :

Dimensionless load parameter, W=w/E′R x 2

B :

Radius of Hertzian contact (m)

X :

Dimensionless coordinate along the entrainment speed, X=x/B

Y :

Dimensionless coordinate perpendicular to the entrainment speed, Y=y/B

References

  1. Cameron A, Gohar R. Theoretical and experimental studies of the oil film in lubricated point contact. P Roy Soc A-Math Phy, 1966, 291: 520–536

    Article  Google Scholar 

  2. Jacobson B O. Rheology and Elastohydrodynamic Lubrication. New York: Elsevier Science, 1991

    Google Scholar 

  3. Johnston G, Wayte R, Spikes H. The measurement and study of very thin lubricant films in concentrated contacts. Tribol Trans, 1991, 34: 187–194

    Article  Google Scholar 

  4. Luo J, Wen S, Huang P. Thin film lubrication. Part I. Study on the transition between EHL and thin film lubrication using a relative optical interference intensity technique. Wear, 1996, 194: 107–115

    Article  Google Scholar 

  5. Hartl M, Krupka I, Poliscuk R, et al. Thin film colorimetric interferometry. Tribol Trans, 2001, 44: 270–276

    Article  Google Scholar 

  6. Hili J, Olver A V, Edwards S, et al. Experimental investigation of elastohydrodynamic (EHD) film thickness behavior at high speeds. Tribol Trans, 2010, 53: 658–666

    Article  Google Scholar 

  7. Gupta P K, Cheng H S, Zhu D, et al. Viscoelastic effects in mil-l-7808-type lubricant, part I: Analytical formulation. Tribol Trans, 1992, 35: 269–274

    Article  Google Scholar 

  8. Crook A W. The lubrication of rollers III. A theoretical discussion of friction and the temperatures in the oil film. P Roy Soc A-Math Phy, 1961, 254: 237–258

    Article  Google Scholar 

  9. Cheng H S. A refined solution to the thermal-elastohydrodynamic lubrication of rolling and sliding cylinders. Tribol Trans, 1965, 8: 397–410

    Article  Google Scholar 

  10. Zhu D, Wen S Z. A full numerical solution for the thermoelastohy-drodynamic problem in elliptical contacts. J Tribol, 1984, 106: 246–254

    Article  Google Scholar 

  11. Kim K H, Sadeghi F. Three-dimensional temperature distribution in ehd lubrication: Part I—circular contact. J Tribol, 1992, 114: 32–41

    Article  Google Scholar 

  12. Qu S, Yang P, Guo F. Theoretical investigation on the dimple occurrence in the thermal EHL of simple sliding steel-glass circular contacts. Tribol Int, 2000, 33: 59–65

    Article  Google Scholar 

  13. Yang P, Qu S, Kaneta M, et al. Formation of steady dimples in point tehl contacts. J Tribol, 2001, 123: 42–49

    Article  Google Scholar 

  14. Yang P, Wen S. A generalized reynolds equation for non-newtonian thermal elastohydrodynamic lubrication. J Tribol, 1990, 112: 631–636

    Article  Google Scholar 

  15. Stachowiak G, Batchelor A W. Engineering Tribology. Burlington: Butterworth-Heinemann, 2011

    Google Scholar 

  16. Ma M. An expedient approach to the non-newtonian thermal EHL in heavily loaded point contacts. Wear, 1997, 206: 100–112

    Article  Google Scholar 

  17. Zhu D, Hu Y. A computer program package for the prediction of EHL and mixed lubrication characteristics, friction, subsurface stresses and flash temperatures based on measured 3D surface roughness. Tribol Trans, 2001, 44: 383–390

    Article  Google Scholar 

  18. Zhu D, Cheng H. An analysis and computational procedure for EHL film thickness, friction and flash temperature in line and point contacts. Tribol Trans, 1989, 32: 364–370

    Article  Google Scholar 

  19. Roelands C J A. Correlational Aspects of the Viscosity-temperature-pressure Relationship of Lubricating Oils. Dissertation for Doctoral Degree. Delft: Technical University of Delft, 1966

    Google Scholar 

  20. Dowson D, Higginson G R, Archard J, et al. Elasto-hydrodynamic Lubrication: The Fundamentals of Roller and Gear Lubrication. Oxford: Pergamon Press, 1966

    Google Scholar 

  21. Wen S, Huang P. Principles of Tribology. New York: John Wiley & Sons, 2012

    Google Scholar 

  22. Hamrock B J, Dowson D. Isothermal elastohydrodynamic lubrication of point contacts: Part III—fully flooded results. J Lubr Technol, 1977, 99: 264–275

    Article  Google Scholar 

  23. Kaneta M, Shigeta T, Yang P. Film pressure distributions in point contacts predicted by thermal EHL analyses. Tribol Int, 2006, 39: 812–819

    Article  Google Scholar 

  24. Kaneta M, Yang P. Effects of thermal conductivity of contacting surfaces on point EHL contacts. J Tribol, 2003, 125: 731–738

    Article  Google Scholar 

  25. Habchi W, Vergne P, Bair S, et al. Influence of pressure and temperature dependence of thermal properties of a lubricant on the behaviour of circular tehd contacts. Tribol Int, 2010, 43: 1842–1850

    Article  Google Scholar 

  26. Yang P, Liu X. Effects of solid body temperature on the non-newtonian thermal elastohydrodynamic lubrication behaviour in point contacts. Proc Inst Mech Eng Part J: J Eng Tribol, 2009, 223: 959–969

    Article  Google Scholar 

  27. Lugt P M, Morales-Espejel G E. A review of elasto-hydrodynamic lubrication theory. Tribol Trans, 2011, 54: 470–496

    Article  Google Scholar 

  28. Yang P, Kaneta M. Effects of the thermal conductivity of contact materials on elastohydrodynamic lubrication characteristics. Proc Inst Mech Eng Part C: J Mech Eng Sci, 2010, 224: 2577–2587

    Article  Google Scholar 

  29. Murch L, Wilson W. A thermal elastohydrodynamic inlet zone analysis. J Lubr Technol, 1975, 97: 212–216

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H., Guo, D., Reddyhoff, T. et al. Influence of thermal effects on elastohydrodynamic (EHD) lubrication behavior at high speeds. Sci. China Technol. Sci. 58, 551–558 (2015). https://doi.org/10.1007/s11431-014-5564-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5564-7

Keywords

Navigation