Skip to main content
Log in

Optimization of cantilevered piezoelectric energy harvester with a fixed resonance frequency

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Piezoelectric energy harvesting is widely used to scavenge vibration energy in the environment. For some vibration sources with fixed frequency, cantilevered harvester can generate the energy effectively, so the optimization theory for cantilevered harvester in such an application is needed. In this article, we present the theoretical and experimental studies of the cantilevered piezoelectric energy harvester with a fixed resonance frequency. An analytical model based on energy method is used to estimate the open-circuit voltage and generated energy. Considering that the harvester may be subjected to the static force or steady-state sinusoidal vibration excitation, static and dynamic analysis is performed for device structure to achieve efficient energy. In the analysis, the effects of geometrical dimension on the energy harvesting performance are discussed comprehensively. Eventually, a prototype is designed and fabricated using (1−x)Pb(Mg1/3Nb2/3)O3−x PbTiO3 (PMN-PT) single crystal with ultrahigh piezoelectric properties and coupling factor. Performances of the cantilever with different clamped length are evaluated under sinusoidal vibration excitation, proving the good consistency between experimental results and theoretical prediction. The established analysis can provide useful guidelines for the structure design of cantilevered piezoelectric energy harvester with a fixed resonance frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roundy S, Wright P K, Rabaey J. A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun, 2003, 26(11): 1131–1144

    Article  Google Scholar 

  2. Priya S. Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram, 2007, 19(1): 165–182

    MathSciNet  Google Scholar 

  3. Beeby S P, Wang L R, Zhu D B, et al. A comparison of power output from linear and nonlinear kinetic energy harvesters using real vibration data. Smart Mater Struct, 2013, 22: 0750227

    Article  Google Scholar 

  4. Kim Y, Shim J, Park K, et al. Structure vibration analysis and active noise control of a power transformer by mobility measurement. In: International Conferences, CA and CES3 2011. Jeju Island, Korea: Springer, 2011. 322–332

    Google Scholar 

  5. Anton S R, Sodano H A. A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct, 2007, 16(3): R1–R21

    Article  Google Scholar 

  6. Tang L H, Yang Y W, Soh C K. Toward broadband vibration-based energy harvesting. J Intel Mat Syst Str, 2010, 21(18): 1867–1897

    Article  Google Scholar 

  7. Zhu D B, Tudor M J, Beeby S P. Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas Sci Technol, 2010, 21: 022001

    Article  Google Scholar 

  8. Beeby S P, Tudor M J, White N M. Energy harvesting vibration sources for microsystems applications. Meas Sci Technol, 2006, 17(12): R175–R195

    Article  Google Scholar 

  9. Friswell M I, Ali S F, Bilgen O, et al. Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass. J Intel Mat Syst Str, 2012, 23(13): 1505–1521

    Article  Google Scholar 

  10. Mak K H, McWilliam S, Popov A A, et al. Performance of a cantilever piezoelectric energy harvester impacting a bump stop. J Sound Vib, 2011, 330(25): 6184–6202

    Article  Google Scholar 

  11. Ren B, Or S W, Zhang Y Y, et al. Piezoelectric energy harvesting using shear mode 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystal cantilever. Appl Phys Lett, 2010, 96: 083502

    Article  Google Scholar 

  12. Xu J W, Shao W W, Kong F R, et al. Right-angle piezoelectric cantilever with improved energy harvesting efficiency. Appl Phys Lett, 2010, 96: 152904

    Article  Google Scholar 

  13. Myers R, Vickers M, Kim H, et al. Small scale windmill. Appl Phys Lett, 2007, 90: 054106

    Article  Google Scholar 

  14. Williams C B, Yates R B. Analysis of a micro-electric generator for microsystems. Sensors Actuat A-Phys, 1996, 52(1–3): 8–11

    Article  Google Scholar 

  15. Roundy S, Wright P K. A piezoelectric vibration based generator for wireless electronics. Smart Mater Struct, 2004, 13(5): 1131–1142

    Article  Google Scholar 

  16. duToit N E, Wardle B L, Kim S G. Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integr Ferroelectr, 2005, 71: 121–160

    Article  Google Scholar 

  17. Erturk A, Inman D J. A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust, 2008, 130: 041002

    Article  Google Scholar 

  18. Erturk A, Inman D J. Issues in mathematical modeling of piezoelectric energy harvesters. Smart Mater Struct, 2008, 17: 065016

    Article  Google Scholar 

  19. Smits J G, Dalke S I, Cooney T K. The constituent equations of piezoelectric bimorphs. Sensors Actuat A-Phys, 1991, 28(1): 41–61

    Article  Google Scholar 

  20. Wang Q M, Cross L E. Constitutive equations of symmetrical triple layer piezoelectric benders. IEEE T Ultrason Ferr, 1999, 46(6): 1343–1351

    Article  Google Scholar 

  21. Sun C L, Qin L F, Li F, et al. Piezoelectric energy harvesting using single crystal Pb(Mg1/3Nb2/3)O3−x PbTiO3 (PMN-PT) device. J Intel Mat Syst Str, 2009, 20(5): 559–568

    Google Scholar 

  22. Erturk A, Inman D J. Mechanical considerations for modeling of vibration-based energy harvesters. Proceedings of the ASME 2007 IDETC 21st Biennial Conference on Mechanical Vibration and Noise. Las Vegas, USA: ASME Press, 2007. 769–778

    Google Scholar 

  23. Shen D N, Choe S Y, Kim D J. Analysis of piezoelectric materials for energy harvesting devices under high-g vibrations. Jpn J Appl Phys, 2007, 46(10A): 6755–6760

    Article  Google Scholar 

  24. Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312(5771): 242–246

    Article  Google Scholar 

  25. Service R F. Shape-changing crystals get shiftier. Science, 1997, 275(5308): 1878

    Article  Google Scholar 

  26. Hagood N W, Chung W H, Von Flotow A. Modelling of piezoelectric actuator dynamics for active structural control. J Intel Mat Syst Str, 1990, 1 (3): 327–354

    Article  Google Scholar 

  27. Mo C, Kim S, Clark A W. Theoretical analysis of energy harvesting performance for unimorph piezoelectric benders with interdigitated electrodes. Smart Mater Struct, 2009, 18: 0550175

    Article  Google Scholar 

  28. Song H J, Choi Y, Wereley N M, et al. Energy harvesting devices using macro-fiber composite materials. J Intel Mat Syst Str, 2010, 21(6): 647–658

    Article  Google Scholar 

  29. Rao S S. Mechenical Vibrations. Beijing: Pearson Education Printice Hall, 2010. 475

    Google Scholar 

  30. Luo H S, Xu G S, Wang P C, et al. Growth and characterization of relaxor ferroelectric PMNT single crystals. Ferroelectrics, 1999, 231(1): 97–102

    Article  Google Scholar 

  31. Wang F F, Luo L H, Zhou D, et al. Complete set of elastic, dielectric, and piezoelectric constants of orthorhombic 0.71Pb (Mg1/3Nb2/3)O3-0.29PbTiO3 single crystal. Appl Phys Lett, 2007, 90: 212903

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaoSu Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Xu, C., Ren, B. et al. Optimization of cantilevered piezoelectric energy harvester with a fixed resonance frequency. Sci. China Technol. Sci. 57, 1093–1100 (2014). https://doi.org/10.1007/s11431-014-5556-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5556-7

Keywords

Navigation