Advertisement

Science China Technological Sciences

, Volume 57, Issue 5, pp 936–946 | Cite as

Dynamics of electric activities in neuron and neurons of network induced by autapses

  • HuiXin Qin
  • Jun MaEmail author
  • WuYin Jin
  • ChunNi Wang
Article Special Topic: Neurodynamics

Abstract

The effect of autapse on adjusting the membrane of potentials of neuron is described by imposing a time-delayed feedback on the membrane of neuron in a close loop type, and the Hindmarsh-Rose (HR) neuron under autapse is investigated. Firstly, the electric activity of single HR neuron under electric autapse and chemical autapse is investigated. It is found that quiescent neuron is activated due to appropriate time delay and feedback gain in the autapse, and the autapse plays an important role in waking up neuron. The parameter region for periodic, chaotic activity of neuron under autapse is calculated in a numerical way, and transition from spiking to bursting is observed by increasing the feedback gain and time delay carefully. Furthermore, the collective electric activities of neurons in a ring network is investigated and abundant electric activities are observed due to the competition between the autapse and the time-delayed coupling between adjacent neurons in the network, and time delay in coupling between neurons also plays an important role in enhancing synchronization in the network.

Keywords

time delay bifurcation Lyapunov exponent neuron network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Morris C, Lecar H. Voltage oscillations in the brain giant muscle fiber. Biophys J, 1981, 35: 193–213CrossRefGoogle Scholar
  2. 2.
    Jaeger J, Czobor P, Berns S M. Basic neuropsychological dimensions in schizophrenia. Schizophrenia Res, 2011, 130: 86–93CrossRefGoogle Scholar
  3. 3.
    Hermann B P. Imaging Epilepsy. J Int Neuropsychol Soc, 2006, 12: 154–156CrossRefGoogle Scholar
  4. 4.
    Baxter P. Epilpsy and sleep. Develop Med Child Neurol, 2005, 47: 723CrossRefGoogle Scholar
  5. 5.
    Seidman L J, Sone W S, Jones R, et al. Comparative effects of schizophrenia and temporal lobe epilepsy on memory. J Int Neuropsychol Soc, 2000, 4: 342–352Google Scholar
  6. 6.
    Labar D. Developmental medicine & child neurology. Develop Med Child Neurol, 2000, 42: 496–499CrossRefGoogle Scholar
  7. 7.
    Johnston A, Smith A. Epilepsy in the older patient. Rev Clinical Gerontol 2007, 17: 109–118CrossRefGoogle Scholar
  8. 8.
    Jia B, Gu H G, Song S L. Experimental researches on different complex bifurcation procedures of neural firing patterns. Sci China Phys Mech, 2013, 43: 518–523Google Scholar
  9. 9.
    Allen N J, Barres B A. Glia-more than just brain glue. Neurosci 2009, 475: 675–677Google Scholar
  10. 10.
    Barres B A. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron, 2008, 60: 430–440CrossRefGoogle Scholar
  11. 11.
    Postnov D E, Ryazanova L S, Brazhe N A, et al. Giant Glial Cell: New Insight Through Mechanism-Based Modeling. J Biol Phys, 2008, 34: 441–457CrossRefGoogle Scholar
  12. 12.
    Postnov D E, Ryazanova L S, Sosnovtseva O S. Functional modeling of neuralglial interaction. BioSystems, 2007, 89: 84–91CrossRefGoogle Scholar
  13. 13.
    Wang R B, Zhang Z K. Energy coding and energy functions for local activities of the brain. Neucomput, 2009, 73: 139–150CrossRefGoogle Scholar
  14. 14.
    Wang R B, Zhang Z K, Chen G R. Energy function and energy evolution on neuronal populations. IEEE Tra Neu Network, 2008, 19: 535–538CrossRefGoogle Scholar
  15. 15.
    Wang R B, Zhang Z K. Energy coding in biological neural networks. Cogn Neurodyn, 2007, 1: 203–212CrossRefGoogle Scholar
  16. 16.
    Fromherz P, Müller C O. Cable properties of a straight neurite of a leech neuron probed by a voltage-sensitive dye. PNAS, 1994, 91: 4604–4608CrossRefGoogle Scholar
  17. 17.
    Tsumoto K, kitajima H, Yoshinaga T, et al. Bifurcations in Morris-Lecar neuron model. Neucomput, 2006, 69: 293–316CrossRefGoogle Scholar
  18. 18.
    Barland S, Piro O, Giudici M, et al. Experimental evidence of van der Pol-Fitzhugh-Nagumo dynamics in semiconductor optical amplifiers. Phys Rev E, 2003, 68: 036209CrossRefGoogle Scholar
  19. 19.
    Nakayama T. Thermosensitive Neurons in the Brain. Jap J Physiol, 1985, 35: 375–389CrossRefGoogle Scholar
  20. 20.
    Hindmarsh J L, Rose R M. A model of the nerve impulse using two first-order differential equations. Nature (London), 1982, 276: 162–164CrossRefGoogle Scholar
  21. 21.
    Wang C N, Ma J, Jin W Y. Identification of parameters with different orders of magnitude in chaotic systems. Dynam Syst, 2012, 27: 253–270CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Yu H J, Tong W J. Chaotic control of hindmarsh-rose neuron by delayed self-feedback. Acta Phys Sin, 2009, 58: 2977–2982zbMATHGoogle Scholar
  23. 23.
    Shi X. Burst Synchronization of Coupled Neurons by Chemical Synapses. Chin Quarterly Mech, 2010, 31: 52–57Google Scholar
  24. 24.
    Lacasta A M, Sagués, Sancho J M. Coherence and anticoherence resonance tuned by noise. Phy Rev E, 2002, 66: 045105CrossRefGoogle Scholar
  25. 25.
    Baltana’s J P, Caado J M. Noise-induced resonances in the Hindmarsh-Rose neuronal model. Phys Rev E, 2002, 65: 041915CrossRefGoogle Scholar
  26. 26.
    Chik D T W, Wang Y Q, Wang Z D. Stochastic resonance in a Hodgkin-Huxley neuron in the absence of external noise. Phys Rev E, 2001, 64: 021913CrossRefGoogle Scholar
  27. 27.
    Yu Y G, Wang W, Wang J F, et al. Resonance-enhanced signal detection and transduction in the Hodgkin-Huxley neuronal systems. Phys Rev E, 2001, 63: 021907CrossRefGoogle Scholar
  28. 28.
    Liu F, Wang J F, Wang W. Frequency sensitivity in weak signal detection. Phys Rev E 1999, 59: 3453–3460CrossRefGoogle Scholar
  29. 29.
    Perc M. Spatial coherence resonance in excitable media. Phys Rev E, 2005, 72: 016207CrossRefMathSciNetGoogle Scholar
  30. 30.
    Perc M. Spatial coherence resonance in neuronal media with discrete local dynamics. Chaos, Solitons & Fractals, 2007, 31: 64–69CrossRefMathSciNetGoogle Scholar
  31. 31.
    Gosak M, Marhl M, Perc M. Spatial coherence resonance in excitable biochemical media induced by internal noise. Biophys Chem, 2007, 128: 210–214CrossRefGoogle Scholar
  32. 32.
    Zhang J Q, Shen C S, Cui Z F. Modulation on the collective response behavior by the system size in two-dimensional coupled cell systems. Sci China Ser G-Phys Mech Astron, 2006, 49: 304–312CrossRefGoogle Scholar
  33. 33.
    Zhou C S, Kurth J. Noise-induced synchronization and coherence resonance of a Hodgkin-Huxley model of thermally sensitive neurons. Chaos, 2003, 13: 401–409CrossRefGoogle Scholar
  34. 34.
    Zhang J Q, Wang C D, Wang M S, et al. Firing patterns transition induced by system size in coupled Hindmarsh-Rose neural system. Neurocomput, 2011, 74: 2961–2966CrossRefGoogle Scholar
  35. 35.
    Perc M. Stochastic resonance on excitable small-world networks via a pacemaker. Phys Rev E, 2007, 76: 066203CrossRefGoogle Scholar
  36. 36.
    Wang Q Y, Perc M, Duan Z S, et al. Delay-enhanced coherence of spiral waves in noisy Hodgkin-Huxley neuronal networks. Phys Lett A, 2008, 372: 5681–5687CrossRefzbMATHGoogle Scholar
  37. 37.
    Wang Q Y, Perc M, Duan Z S, et al. Delay-induced multiple stochastic resonances on scale-free neuronal networks. Chaos, 2009, 19: 023112CrossRefGoogle Scholar
  38. 38.
    Liu Z Q, Zhang H M, Li Y L, et al. Multiple spatial coherence resonance induced by stochastic signal in neuronal networks near a saddle-node bifurcation. Physica A, 2010, 389: 2642–2653CrossRefGoogle Scholar
  39. 39.
    Wu X Y, Ma J. The Formation Mechanism of Defects, Spiral Wave in the Network of Neurons. Plos One, 2013, 8:55403CrossRefMathSciNetGoogle Scholar
  40. 40.
    Hu B L, Ma J, Tang J. Selection of Multiarmed spiral waves in a regular network of neurons. PLOS ONE, 2013, 8: 69251CrossRefGoogle Scholar
  41. 41.
    Ma J, Huang L, Wang C N, et al. Robustness, Death of Spiral Wave in the Network of Neurons under Partial Ion Channel Block. Commun Theor Phys, 2013, 59: 233–242CrossRefzbMATHGoogle Scholar
  42. 42.
    Wu X Y, Ma J. Development of spiral wave in a regular network of excitatory neurons due to stochastic poisoning of ion channels. Commun Nonlinear Sci Numer Simulat, 2013, 18: 3350–3364CrossRefMathSciNetGoogle Scholar
  43. 43.
    Ma J, Wu Y, Wu N J, et al. Detection of ordered wave in the networks of neurons with changeable connection. Sci China Phys Mech Astro, 2013, 56: 952–959CrossRefGoogle Scholar
  44. 44.
    Ma J, Wu Y, Ying H P, et al. Channel noise-induced phase transition of spiral wave in networks of Hodgkin-Huxley neurons. Chin Sci Bull, 2011, 56: 151–157CrossRefGoogle Scholar
  45. 45.
    Ma J, Zhang A H, Tang J, et al. Robustness and breakup of the spiral wave in a two-dimensional lattice network of neurons. Sci China Phys Mech Astro, 2010, 53: 672–679CrossRefGoogle Scholar
  46. 46.
    Joachim L, Henry M, Michael F, et al. Frequency and Dendritic Distribution of Autapses Established by Layer 5 Pyramidal Neurons in the Developing Rat Neocortex: Comparison with Synaptic Innervation of Adjacent Neurons of the Same Class. J Neurosci, 1996, 16: 3209–3218Google Scholar
  47. 47.
    Nägler K, Mauch D H, Pfrieger F W. Glia-derived signals induce synapse formation in neurons of the rat central nervous system. J Physiol, 2001, 533: 665–679CrossRefGoogle Scholar
  48. 48.
    Herrmann C S, Klaus A. Autapse Turns Neuron into Oscillator. Int J Bifurcat Chaos, 2004, 14: 623–633CrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    Ullian E M, Harris B T, Wu A, et al. Schwann cells and astrocytes induce synapse formation by spinal motor neurons in culture. Mol Cell Neurosci, 2004, 25: 241–251CrossRefGoogle Scholar
  50. 50.
    Fan Y T, Xu F, Huang G Y, et al. Single neuron capture and axonal development in three-dimensional microscale hydrogels. Lab Chip, 2012, 12: 4724–4731CrossRefGoogle Scholar
  51. 51.
    Bekkers J M. Synaptic Transmission: Functional Autapses in theCortex. Current Biology, 2003, 13: 433–435CrossRefGoogle Scholar
  52. 52.
    Seung H S. The Autapse: A Simple Illustration of Short-Term Analog Memory Storage by Tuned Synaptic Feedback. J Comput Neurosci, 2000, 9: 171–185CrossRefzbMATHGoogle Scholar
  53. 53.
    Sgro A E, Nowak A L, Austin N S, et al. A high-throughput method for generating uniform microislands for autaptic neuronal cultures. J Neurosc Methods, 2011, 198: 230–235CrossRefGoogle Scholar
  54. 54.
    Yun Y L, Schmid G, Hänggi P, et al. Spontaneous spiking in an autaptic Hodgkin-Huxley setup. Phys Rev E, 2010, 82: 061907CrossRefMathSciNetGoogle Scholar
  55. 55.
    Wang H T, Chen Y L, Chen Y, et al. Autapse affect Firing Patterns Transition in Bursting Neuron. Commun Nonlinear Sci Numer Simulat, 2013Google Scholar
  56. 56.
    Belykh I, de Lange E, Hasler M. Synchronization of Bursting Neurons: What Matters in the Network Topology. Phys Rev Lett, 2005, 94: 118101CrossRefGoogle Scholar
  57. 57.
    Gu HG, Yang M H, Li L, et al. Dynamics of autonomous stochastic resonance in neural period-adding bifurcation scenarios. Phys Lett A, 2003, 319: 89–96;.CrossRefzbMATHMathSciNetGoogle Scholar
  58. 58.
    Channell P, Cymbalyuk G, Shilnikov A. Origin of bursting through homoclinic spike adding in a neuron model. Phys Rev Lett, 2007, 98: 134101CrossRefGoogle Scholar
  59. 59.
    González-Miranda J. Complex bifurcation structures in the Hindmarsh-Rose neuron model. Int J Bifurcat Chaos, 2007, 17: 3071–3083CrossRefzbMATHGoogle Scholar
  60. 60.
    Mo J, Li Y Y, Wei C L, et al. Interpreting a period-adding bifurcation scenario in neural bursting patterns using border-collision bifurcation in a discontinuous map of a slow control variable. Chin Phys B, 2010, 19: 080513CrossRefGoogle Scholar
  61. 61.
    Linaro D, Champneys A, Desroches M, et al. Codimension-two homoclinic bifurcations underlying spike adding in the Hindmarsh-Rose burster. SIAM J Appl Dyn Syst, 2012, 11: 939–962CrossRefzbMATHMathSciNetGoogle Scholar
  62. 62.
    Gu H G, Jia B, Chen G R. Experimental evidence of a chaotic region in a neural pacemaker. Phys Lett A, 2013, 377: 718–720CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PhysicsLanzhou University of TechnologyLanzhouChina
  2. 2.College of Mechano-Electronic EngineeringLanzhou, University of TechnologyLanzhouChina

Personalised recommendations