Skip to main content
Log in

Dynamics of electric activities in neuron and neurons of network induced by autapses

  • Article
  • Special Topic: Neurodynamics
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The effect of autapse on adjusting the membrane of potentials of neuron is described by imposing a time-delayed feedback on the membrane of neuron in a close loop type, and the Hindmarsh-Rose (HR) neuron under autapse is investigated. Firstly, the electric activity of single HR neuron under electric autapse and chemical autapse is investigated. It is found that quiescent neuron is activated due to appropriate time delay and feedback gain in the autapse, and the autapse plays an important role in waking up neuron. The parameter region for periodic, chaotic activity of neuron under autapse is calculated in a numerical way, and transition from spiking to bursting is observed by increasing the feedback gain and time delay carefully. Furthermore, the collective electric activities of neurons in a ring network is investigated and abundant electric activities are observed due to the competition between the autapse and the time-delayed coupling between adjacent neurons in the network, and time delay in coupling between neurons also plays an important role in enhancing synchronization in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morris C, Lecar H. Voltage oscillations in the brain giant muscle fiber. Biophys J, 1981, 35: 193–213

    Article  Google Scholar 

  2. Jaeger J, Czobor P, Berns S M. Basic neuropsychological dimensions in schizophrenia. Schizophrenia Res, 2011, 130: 86–93

    Article  Google Scholar 

  3. Hermann B P. Imaging Epilepsy. J Int Neuropsychol Soc, 2006, 12: 154–156

    Article  Google Scholar 

  4. Baxter P. Epilpsy and sleep. Develop Med Child Neurol, 2005, 47: 723

    Article  Google Scholar 

  5. Seidman L J, Sone W S, Jones R, et al. Comparative effects of schizophrenia and temporal lobe epilepsy on memory. J Int Neuropsychol Soc, 2000, 4: 342–352

    Google Scholar 

  6. Labar D. Developmental medicine & child neurology. Develop Med Child Neurol, 2000, 42: 496–499

    Article  Google Scholar 

  7. Johnston A, Smith A. Epilepsy in the older patient. Rev Clinical Gerontol 2007, 17: 109–118

    Article  Google Scholar 

  8. Jia B, Gu H G, Song S L. Experimental researches on different complex bifurcation procedures of neural firing patterns. Sci China Phys Mech, 2013, 43: 518–523

    Google Scholar 

  9. Allen N J, Barres B A. Glia-more than just brain glue. Neurosci 2009, 475: 675–677

    Google Scholar 

  10. Barres B A. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron, 2008, 60: 430–440

    Article  Google Scholar 

  11. Postnov D E, Ryazanova L S, Brazhe N A, et al. Giant Glial Cell: New Insight Through Mechanism-Based Modeling. J Biol Phys, 2008, 34: 441–457

    Article  Google Scholar 

  12. Postnov D E, Ryazanova L S, Sosnovtseva O S. Functional modeling of neuralglial interaction. BioSystems, 2007, 89: 84–91

    Article  Google Scholar 

  13. Wang R B, Zhang Z K. Energy coding and energy functions for local activities of the brain. Neucomput, 2009, 73: 139–150

    Article  Google Scholar 

  14. Wang R B, Zhang Z K, Chen G R. Energy function and energy evolution on neuronal populations. IEEE Tra Neu Network, 2008, 19: 535–538

    Article  Google Scholar 

  15. Wang R B, Zhang Z K. Energy coding in biological neural networks. Cogn Neurodyn, 2007, 1: 203–212

    Article  Google Scholar 

  16. Fromherz P, Müller C O. Cable properties of a straight neurite of a leech neuron probed by a voltage-sensitive dye. PNAS, 1994, 91: 4604–4608

    Article  Google Scholar 

  17. Tsumoto K, kitajima H, Yoshinaga T, et al. Bifurcations in Morris-Lecar neuron model. Neucomput, 2006, 69: 293–316

    Article  Google Scholar 

  18. Barland S, Piro O, Giudici M, et al. Experimental evidence of van der Pol-Fitzhugh-Nagumo dynamics in semiconductor optical amplifiers. Phys Rev E, 2003, 68: 036209

    Article  Google Scholar 

  19. Nakayama T. Thermosensitive Neurons in the Brain. Jap J Physiol, 1985, 35: 375–389

    Article  Google Scholar 

  20. Hindmarsh J L, Rose R M. A model of the nerve impulse using two first-order differential equations. Nature (London), 1982, 276: 162–164

    Article  Google Scholar 

  21. Wang C N, Ma J, Jin W Y. Identification of parameters with different orders of magnitude in chaotic systems. Dynam Syst, 2012, 27: 253–270

    Article  MATH  MathSciNet  Google Scholar 

  22. Yu H J, Tong W J. Chaotic control of hindmarsh-rose neuron by delayed self-feedback. Acta Phys Sin, 2009, 58: 2977–2982

    MATH  Google Scholar 

  23. Shi X. Burst Synchronization of Coupled Neurons by Chemical Synapses. Chin Quarterly Mech, 2010, 31: 52–57

    Google Scholar 

  24. Lacasta A M, Sagués, Sancho J M. Coherence and anticoherence resonance tuned by noise. Phy Rev E, 2002, 66: 045105

    Article  Google Scholar 

  25. Baltana’s J P, Caado J M. Noise-induced resonances in the Hindmarsh-Rose neuronal model. Phys Rev E, 2002, 65: 041915

    Article  Google Scholar 

  26. Chik D T W, Wang Y Q, Wang Z D. Stochastic resonance in a Hodgkin-Huxley neuron in the absence of external noise. Phys Rev E, 2001, 64: 021913

    Article  Google Scholar 

  27. Yu Y G, Wang W, Wang J F, et al. Resonance-enhanced signal detection and transduction in the Hodgkin-Huxley neuronal systems. Phys Rev E, 2001, 63: 021907

    Article  Google Scholar 

  28. Liu F, Wang J F, Wang W. Frequency sensitivity in weak signal detection. Phys Rev E 1999, 59: 3453–3460

    Article  Google Scholar 

  29. Perc M. Spatial coherence resonance in excitable media. Phys Rev E, 2005, 72: 016207

    Article  MathSciNet  Google Scholar 

  30. Perc M. Spatial coherence resonance in neuronal media with discrete local dynamics. Chaos, Solitons & Fractals, 2007, 31: 64–69

    Article  MathSciNet  Google Scholar 

  31. Gosak M, Marhl M, Perc M. Spatial coherence resonance in excitable biochemical media induced by internal noise. Biophys Chem, 2007, 128: 210–214

    Article  Google Scholar 

  32. Zhang J Q, Shen C S, Cui Z F. Modulation on the collective response behavior by the system size in two-dimensional coupled cell systems. Sci China Ser G-Phys Mech Astron, 2006, 49: 304–312

    Article  Google Scholar 

  33. Zhou C S, Kurth J. Noise-induced synchronization and coherence resonance of a Hodgkin-Huxley model of thermally sensitive neurons. Chaos, 2003, 13: 401–409

    Article  Google Scholar 

  34. Zhang J Q, Wang C D, Wang M S, et al. Firing patterns transition induced by system size in coupled Hindmarsh-Rose neural system. Neurocomput, 2011, 74: 2961–2966

    Article  Google Scholar 

  35. Perc M. Stochastic resonance on excitable small-world networks via a pacemaker. Phys Rev E, 2007, 76: 066203

    Article  Google Scholar 

  36. Wang Q Y, Perc M, Duan Z S, et al. Delay-enhanced coherence of spiral waves in noisy Hodgkin-Huxley neuronal networks. Phys Lett A, 2008, 372: 5681–5687

    Article  MATH  Google Scholar 

  37. Wang Q Y, Perc M, Duan Z S, et al. Delay-induced multiple stochastic resonances on scale-free neuronal networks. Chaos, 2009, 19: 023112

    Article  Google Scholar 

  38. Liu Z Q, Zhang H M, Li Y L, et al. Multiple spatial coherence resonance induced by stochastic signal in neuronal networks near a saddle-node bifurcation. Physica A, 2010, 389: 2642–2653

    Article  Google Scholar 

  39. Wu X Y, Ma J. The Formation Mechanism of Defects, Spiral Wave in the Network of Neurons. Plos One, 2013, 8:55403

    Article  MathSciNet  Google Scholar 

  40. Hu B L, Ma J, Tang J. Selection of Multiarmed spiral waves in a regular network of neurons. PLOS ONE, 2013, 8: 69251

    Article  Google Scholar 

  41. Ma J, Huang L, Wang C N, et al. Robustness, Death of Spiral Wave in the Network of Neurons under Partial Ion Channel Block. Commun Theor Phys, 2013, 59: 233–242

    Article  MATH  Google Scholar 

  42. Wu X Y, Ma J. Development of spiral wave in a regular network of excitatory neurons due to stochastic poisoning of ion channels. Commun Nonlinear Sci Numer Simulat, 2013, 18: 3350–3364

    Article  MathSciNet  Google Scholar 

  43. Ma J, Wu Y, Wu N J, et al. Detection of ordered wave in the networks of neurons with changeable connection. Sci China Phys Mech Astro, 2013, 56: 952–959

    Article  Google Scholar 

  44. Ma J, Wu Y, Ying H P, et al. Channel noise-induced phase transition of spiral wave in networks of Hodgkin-Huxley neurons. Chin Sci Bull, 2011, 56: 151–157

    Article  Google Scholar 

  45. Ma J, Zhang A H, Tang J, et al. Robustness and breakup of the spiral wave in a two-dimensional lattice network of neurons. Sci China Phys Mech Astro, 2010, 53: 672–679

    Article  Google Scholar 

  46. Joachim L, Henry M, Michael F, et al. Frequency and Dendritic Distribution of Autapses Established by Layer 5 Pyramidal Neurons in the Developing Rat Neocortex: Comparison with Synaptic Innervation of Adjacent Neurons of the Same Class. J Neurosci, 1996, 16: 3209–3218

    Google Scholar 

  47. Nägler K, Mauch D H, Pfrieger F W. Glia-derived signals induce synapse formation in neurons of the rat central nervous system. J Physiol, 2001, 533: 665–679

    Article  Google Scholar 

  48. Herrmann C S, Klaus A. Autapse Turns Neuron into Oscillator. Int J Bifurcat Chaos, 2004, 14: 623–633

    Article  MATH  MathSciNet  Google Scholar 

  49. Ullian E M, Harris B T, Wu A, et al. Schwann cells and astrocytes induce synapse formation by spinal motor neurons in culture. Mol Cell Neurosci, 2004, 25: 241–251

    Article  Google Scholar 

  50. Fan Y T, Xu F, Huang G Y, et al. Single neuron capture and axonal development in three-dimensional microscale hydrogels. Lab Chip, 2012, 12: 4724–4731

    Article  Google Scholar 

  51. Bekkers J M. Synaptic Transmission: Functional Autapses in theCortex. Current Biology, 2003, 13: 433–435

    Article  Google Scholar 

  52. Seung H S. The Autapse: A Simple Illustration of Short-Term Analog Memory Storage by Tuned Synaptic Feedback. J Comput Neurosci, 2000, 9: 171–185

    Article  MATH  Google Scholar 

  53. Sgro A E, Nowak A L, Austin N S, et al. A high-throughput method for generating uniform microislands for autaptic neuronal cultures. J Neurosc Methods, 2011, 198: 230–235

    Article  Google Scholar 

  54. Yun Y L, Schmid G, Hänggi P, et al. Spontaneous spiking in an autaptic Hodgkin-Huxley setup. Phys Rev E, 2010, 82: 061907

    Article  MathSciNet  Google Scholar 

  55. Wang H T, Chen Y L, Chen Y, et al. Autapse affect Firing Patterns Transition in Bursting Neuron. Commun Nonlinear Sci Numer Simulat, 2013

    Google Scholar 

  56. Belykh I, de Lange E, Hasler M. Synchronization of Bursting Neurons: What Matters in the Network Topology. Phys Rev Lett, 2005, 94: 118101

    Article  Google Scholar 

  57. Gu HG, Yang M H, Li L, et al. Dynamics of autonomous stochastic resonance in neural period-adding bifurcation scenarios. Phys Lett A, 2003, 319: 89–96;.

    Article  MATH  MathSciNet  Google Scholar 

  58. Channell P, Cymbalyuk G, Shilnikov A. Origin of bursting through homoclinic spike adding in a neuron model. Phys Rev Lett, 2007, 98: 134101

    Article  Google Scholar 

  59. González-Miranda J. Complex bifurcation structures in the Hindmarsh-Rose neuron model. Int J Bifurcat Chaos, 2007, 17: 3071–3083

    Article  MATH  Google Scholar 

  60. Mo J, Li Y Y, Wei C L, et al. Interpreting a period-adding bifurcation scenario in neural bursting patterns using border-collision bifurcation in a discontinuous map of a slow control variable. Chin Phys B, 2010, 19: 080513

    Article  Google Scholar 

  61. Linaro D, Champneys A, Desroches M, et al. Codimension-two homoclinic bifurcations underlying spike adding in the Hindmarsh-Rose burster. SIAM J Appl Dyn Syst, 2012, 11: 939–962

    Article  MATH  MathSciNet  Google Scholar 

  62. Gu H G, Jia B, Chen G R. Experimental evidence of a chaotic region in a neural pacemaker. Phys Lett A, 2013, 377: 718–720

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, H., Ma, J., Jin, W. et al. Dynamics of electric activities in neuron and neurons of network induced by autapses. Sci. China Technol. Sci. 57, 936–946 (2014). https://doi.org/10.1007/s11431-014-5534-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5534-0

Keywords

Navigation