Skip to main content
Log in

FDTD analysis of the optical properties of vertical ZnO nanorod array

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Based on the structure and dimensions of a vertical ZnO nanorod array (V-ZNA) sample, an ideal 2-D photonic crystal model was established. The optical properties of the V-ZNAs were analyzed with finite-difference time-domain (FDTD) method, and the influences of the geometry parameters, including the circumcircle diameters of the top and bottom surfaces (D t and D b) and the height (H) of the nanorods, and the pitch between each column (L), were discussed. High transmittance and low reflectance in the waveband of 400–800 nm were proved, and the highest transmittance can be obtained with D t<50 nm, H=200 nm, and D b/L=0.85, which was verified by Effective Index Method (EIM). The result indicates that V-ZNAs can be used as excellent light coupling element and antireflection material for solar energy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Willander M, Nur O, Zhao Q X, et al. Zinc oxide nanorod based photonic devices: Recent progress in growthnology. Nanotechnology, 2009, 20: 332001

    Article  Google Scholar 

  2. Lee G H. Synthesis of pencil-shaped zno nanowires using sunlight. Mater Lett, 2012, 73: 53–55

    Article  Google Scholar 

  3. Hong K Q, Song R, Liu L Q, et al. Synthesis and cathode luminescence properties of ZnO multipod nanoneedles. Mater Lett, 2012, 67: 202–204

    Article  Google Scholar 

  4. Fragala M E, Aleeva Y, Malandrino G. Effects of metal-organic chemical vapour deposition grown seed layer on the fabrication of well aligned zno nanorods by chemical bath deposition. Thin Solid Films, 2011, 519: 7694–7701

    Article  Google Scholar 

  5. Gargas D J, Moore M C, Ni A, et al. Whispering gallery mode lasing from zinc oxide hexagonal nanodisks. Acs Nano, 2010, 4: 3270–3276

    Article  Google Scholar 

  6. Zhang D, Wang C, Liu Y, et al. High c-axis preferred orientation zno thin films prepared by oxidation of metallic zinc. Opt Laser Tech, 2012, 44: 1136–1140

    Article  Google Scholar 

  7. Xi Y, Wu W Z, Fang H, et al. Integrated ZnO nanotube arrays as efficient dye-sensitized solar cells. J Alloy Compd, 2012, 529: 163–168

    Article  Google Scholar 

  8. Yuan Z L, Yu J S, Wang N N, et al. Well-aligned ZnO nanorod arrays from diameter-controlled growth and their application in inverted polymer solar cell. J Mater Sci-Mater, 2011, 22: 1730–1735

    Article  Google Scholar 

  9. Jing X F, Shao P D, Jin Y X, et al. Near-field distribution of broadband antireflective nanostructure arrays. Optik, 2012, 123: 527–533

    Article  Google Scholar 

  10. Yun D Q, Xia X Y, Zhang S, et al. ZnO nanorod arrays with different densities in hybrid photovoltaic devices: fabrication and the density effect on performance. Chem Phys Lett, 2011, 516: 92–95

    Article  Google Scholar 

  11. Jha S, Wang C D, Luan C Y, et al. Near-ultraviolet light-emitting devices using vertical ZnO nanorod arrays. J Electron Mater, 2012, 41: 853–856

    Article  Google Scholar 

  12. Lim Y T, Son J Y, Rhee J S. Vertical ZnO nanorod array as an effective hydrogen gas sensor. Ceram Int, 2013, 39: 887–890

    Article  Google Scholar 

  13. Singh D, Narasimulu A A, Garcia-Gancedo L, et al. Vertically aligned smooth ZnO nanorod films for planar device applications. J Mater Chem C, 2013, 1: 2525–2528

    Article  Google Scholar 

  14. Zhang X, Lu Z, Meng F, et al. Effects of oxygen partial pressure and substrate temperature on the structure and optical properties of MgxZn1−x O thin films prepared by magnetron sputtering. Appl Surf Sci, 2011, 257: 6554–6559

    Article  Google Scholar 

  15. Solis-Pomar F, Martinez E, Melendrez M F, et al. Growth of vertically aligned zno nanorods using textured ZnO films. Nanosc Res Lett, 2011, 6: 524

    Article  Google Scholar 

  16. Shin B K, Lee T I, Xiong J, et al. Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on cuingase2 solar cells. Sol Energ Mat Sol C, 2011, 95: 2650–2654

    Article  Google Scholar 

  17. Chen J, Ye H, Ae L, et al. Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications. Sol Energ Mat Sol C, 2011, 95: 1437–1440

    Article  Google Scholar 

  18. Mamat M H, Ishak N I, Khusaimi Z, et al. Thickness-dependent characteristics of aluminium-doped zinc oxide nanorod-array-based, ultraviolet photoconductive sensors. Jpn J Appl Phys, 2012, 51: 06FF03

    Article  Google Scholar 

  19. Hsu C H, Chen D H. Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films. Nanotechnology, 2010, 21: 285603

    Article  MathSciNet  Google Scholar 

  20. Ruankham P, Macaraig L, Sagawa T, et al. Surface modification of ZnO nanorods with small organic molecular dyes for polymer-inorganic hybrid solar cells. J Phys Chem C, 2011, 115: 23809–23816

    Article  Google Scholar 

  21. Lee S W, Cho H D, Panin G, et al. Vertical ZnO nanorod/Si contact light-emitting diode. Appl Phys Lett, 2011, 98: 093110

    Article  Google Scholar 

  22. Wang H H, Dong S J, Zhou X P, et al. Effect of synthesis conditions on microstructures and photoluminescence properties of Ga doped ZnO nanorod arrays. Physica E, 2011, 44: 307–312

    Article  Google Scholar 

  23. Chen S W, Wu J M. Nucleation mechanisms and their Influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method. Acta Mater, 2011, 59: 841–847

    Article  Google Scholar 

  24. Shinagawa T, Watase S, Izaki M. Size-controllable growth of vertical ZnO nanorod arrays by a Pd-catalyzed chemical solution process. Cryst Growth Des, 2011, 11: 5533–5539

    Article  Google Scholar 

  25. Holmgaard T, Bozhevolnyi S I. Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys Rev B, 2007, 75: 245405

    Article  Google Scholar 

  26. Kuester E F, Holloway C L. A low-frequency model for wedge or pyramid absorber arrays. 1. Theory. IEEE T Electromagn C, 1994, 36: 300–306

    Article  Google Scholar 

  27. Holloway C L, Kuester E F. A Low-frequency model for wedge or pyramid absorber arrays. 2. Computed and measured results. IEEE T Electromagn C, 1994, 36: 307–313

    Article  Google Scholar 

  28. Ilican S, Caglar M, Caglar Y. Sn doping effects on the electro-optical properties of sol-gel derived transparent ZnO films. Appl Surf Sci, 2010, 256: 7204–7210

    Article  Google Scholar 

  29. Chao Y C, Chen C Y, Lin C A, et al. Light scattering by nanostructured anti-reflection coatings. Energy Environ Sci, 2011, 4: 3436–3441

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, Y., Ye, H. & Chen, J. FDTD analysis of the optical properties of vertical ZnO nanorod array. Sci. China Technol. Sci. 57, 1147–1153 (2014). https://doi.org/10.1007/s11431-014-5525-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5525-1

Keywords

Navigation