Skip to main content
Log in

Cold-temperature deformation of nano-sized tungsten and niobium as revealed by in-situ nano-mechanical experiments

  • Article
  • Special Topic: Mechanical Behaviour of Micro- and Nano-Scale Materials
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

We constructed and developed an in-situ cryogenic nanomechanical system to study small-scale mechanical behavior of materials at low temperatures. Uniaxial compression of two body-centered-cubic (bcc) metals, Nb and W, with diameters between 400 and 1300 nm, was studied at room temperature and at 165 K. Experiments were conducted inside of a Scanning Electron Microscope (SEM) equipped with a nanomechanical module, with simultaneous cooling of sample and diamond tip. Stress-strain data at 165 K exhibited higher yield strengths and more extensive strain bursts on average, as compared to those at 298 K. We discuss these differences in the framework of nano-sized plasticity and intrinsic lattice resistance. Dislocation dynamics simulations with surface-controlled dislocation multiplication were used to gain insight into size and temperature effects on deformation of nano-sized bcc metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nix W D, Greer J R, Feng G, et al. Deformation at the nanometer and micrometer length scales: Effects of strain gradients and dislocation starvation. Thin Solid Films, 2007, 515: 3152–3157

    Article  Google Scholar 

  2. Uchic M D, Shade P A, Dimiduk D M. Plasticity of micrometer-scale single crystals in compression. Annu Rev Mater Res, 2009, 39: 361–386

    Article  Google Scholar 

  3. Kraft O, Gruber P A, Mönig R, et al. Plasticity in confined dimensions. Annu Rev Mater Res, 2010, 40: 293–317

    Article  Google Scholar 

  4. Zhu T, Li J. Ultra-strength materials. Prog Mater Sci, 2010, 55: 710–757

    Article  Google Scholar 

  5. Greer J R, De Hossen J T M. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog Mater Sci, 2011, 56: 654–724

    Article  Google Scholar 

  6. Uchic M D, Dimiduk M D, Florando J N, et al. Sample dimensions influence strength and crystal plasticity. Science, 2004, 305: 986–989

    Article  Google Scholar 

  7. Greer J R, Oliver W C, Nix W D. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater, 2005, 53: 1821–1830

    Article  Google Scholar 

  8. Volkert C A, Lilleodden E T. Size effects in the deformation of sub-micron Au columns. Phil Mag, 2006, 86: 5567–5579

    Article  Google Scholar 

  9. Kim J Y, Jang D, Greer J R. Insight into the deformation behavior of niobium single crystals under uniaxial compression and tension at the nanoscale. Scripta Mater, 2009, 61: 300–303

    Article  Google Scholar 

  10. Jang D, Greer J R. Transition from a strong-yet-brittle to a stronger- and-ductile state by size reduction of metallic glasses. Nature Mater, 2010, 9: 215–219

    Google Scholar 

  11. Jang D, Li X, Gao H, et al. Deformation mechanisms nanotwinned metal nanopillars. Nature Nanotech, 2012, 7: 594–601

    Article  Google Scholar 

  12. Richter G, Hillerich K, Gianola D S, et al. Ultra high strength single crystalline nanowhisker grown by physical vapor deposition. Nano Lett, 2009, 9: 3048–3052

    Article  Google Scholar 

  13. Mompiou F, Legros M, Sedlmayr A, et al. Source based strengthening of sub-micrometer Al fibers. Acta Mater, 2012, 60: 977–983

    Article  Google Scholar 

  14. Chisholm C, Bei H, Lowry M B, et al. Dislocation starvation and exhaustion hardening in Mo alloy nanofibers. Acta Materialia, 2012, 60: 2258–2264

    Article  Google Scholar 

  15. Kumar S, Li X, Haque A, et al. Is stress concentration relevant for nanocrystalline metals? Nano Lett, 2011, 11: 2510–2516

    Article  Google Scholar 

  16. Kang W, Saif M T A. In situ study of size and temperature dependent brittle-to-ductile transition in single crystal silicon. Adv Func Mater, 2013, 23: 713–719

    Article  Google Scholar 

  17. Yilmaz M, Kysar J W. Monolithic integration of nanoscale tensile specimens and MEMS structures. Nanotechnology, 2013, 24: 165502

    Article  Google Scholar 

  18. Azevedo R G, Jones D G, Jog A V, et al. A SiC MEMS resonant strain sensor for harsh environment applications. IEEE Sensors J, 2007, 7: 568–576

    Article  Google Scholar 

  19. Myers D R, Chen L, Wijesundara M B J, et al. Silicon carbide resonant tuning fork for microsensing applications in high-temperature and high G-shock environments. J Micro/Nanolith MEMS MOEMS, 2009, 8: 021116

    Article  Google Scholar 

  20. Zamkotsizn F, Grassi E, Waldis S, et al. Interferometric characterization of MOEMS devices in cryogenic environment for astromonical instrumentation. In: Proc SPIE 6884, Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS VII, 68840D, San Jose, 2008, http://dx.doi,org/10.1117/12.768410

    Google Scholar 

  21. Trenkel, J C, Packard C E, Schuh C A. Hot nanoindentation in inert environments. Rev Sci Instrum, 2010, 81: 073901

    Article  Google Scholar 

  22. Juan S J, Nó M L, Schuh C A. Themomechanical behavior at the nanoscale and size effects in shape memory alloys. J Mater Res, 2011, 26: 2461–2469

    Article  Google Scholar 

  23. Schuh C A, Mason J K, Lund A C. Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nature Mater, 2005, 4: 617–621

    Article  Google Scholar 

  24. Franke O, Trenkle J, Schuh C A. Temperature dependence of the indentation size effect. J Mater Res, 2010, 25: 1225–1229

    Article  Google Scholar 

  25. Namazu T, Isono Y. High-cycle fatigue test of nanoscale Si and SiO2 wires based on AFM technique. In: Micro Electro Mechanical Systems IEEE, Kyoto, 2003. 662–665, http://dx.doi.org/10.1109/MEMSYS.2003.1189836

    Google Scholar 

  26. Greer J R, Kim K Y, Burek M J. In-situe mechanical testing of nano-scale single crystalline nano-pillars. Jom, 2009, 61: 19–25

    Article  Google Scholar 

  27. Lee S W, Meza L R, Greer J R. Cryogenic nanoindentation size effect in [0 0 1]-oriented face-centered cubic and body-centered cubic single crystals. App Phy Lett, 2013, 103: 101906

    Article  Google Scholar 

  28. Lowry M B, Kiener D, LeBlanc M M, et al. Achieving the ideal strength in annealed molybdenum nanopillars. Acta Mater, 2010, 58: 5160–5167

    Article  Google Scholar 

  29. Hirth J P, Lothe J. Theory of Dislocations. 2nd ed. New York: McGraw-Hill, 1982. 559–569

    Google Scholar 

  30. Lee S W, Han S M, Nix W D. Uniaxial compression of fcc Au nanopillars on an MgO substrate: The effects of prestraining and annealing. Acta Mater, 2009, 57: 4404–4415

    Article  Google Scholar 

  31. Kim J Y, Jang D, Greer J R. Tensile and compressive behavior of tungsten, molybdenum, tantalum, and niobium at the nanoscale. Acta Mater, 2010, 58: 2355–2363

    Article  Google Scholar 

  32. Nemat-Nasser S, Guo W. Flow stress of commercially pure niobium over a broad range of temperatures and strain rates. Mater Sci Eng A, 2000, 294: 202–210

    Article  Google Scholar 

  33. Schneider A S, Kaufmann D, Clark B G, et al. Correlation between critical temperature and strength of small-scale bcc pillars. Phys Rev Lett, 2009, 103: 105501

    Article  Google Scholar 

  34. Schneider A S, Frick C P, Arzt E, et al. Influence of test temperature on the size effect in molybdenum small-scale compression pillars. Phil Mag Lett, 2013, 93: 331–338

    Article  Google Scholar 

  35. Lee S W, Nix W D. Size dependence of the yield strength of fcc and bcc metallic micropillars with diameters of a few micrometers. Phil Mag, 2012, 92: 1238–1260

    Article  Google Scholar 

  36. Parthasarathy T A, Rao S I, Dimiduk D M, et al. Contribution to size effect of yield strength from the stochastic of dislocation source lengths in finite samples. Scripta Mater, 2007, 56: 313–316

    Article  Google Scholar 

  37. Ng K S, Ngan A H N. Breakdown in Schmid’s law in micropillars. Scripta Mater, 2008, 59: 796–799

    Article  Google Scholar 

  38. Suzuki T, Koizuiv H, Kirchner H K. Plastic flow stress of b.c.c. transition metals and the Peierls potential. Acta Metall Mater, 1995, 43: 177–2187

    Article  Google Scholar 

  39. Raffo P L. Yielding and fracture of tungsten and tungsten-rhenium alloys. J Less Comm Met, 1969, 17: 133–149

    Article  Google Scholar 

  40. Cheng G M, Jian W W, Xu W Z, et al. Grain size effect on deformation mechanism of nanocrystalline BCC metals. Mater Res Lett, 2013, 1: 26–31

    Article  Google Scholar 

  41. Weinberger C R, Cai W. Surface-controlled dislocation multiplication in metal micropillars. PNAS, 2008, 105: 14304–14307

    Article  Google Scholar 

  42. Greer J R, Weinberger C R, Cai W. Comparing the strength of f.c.c. and b.c.c. sub-micrometer pillars: Compression experiments and dislocation dynamics simulations. Mater Sci Eng A, 2008, 493: 21–25

    Article  Google Scholar 

  43. Ryu I, Nix W D, Cai W. Plasticity of bcc micropillars controlled by competition between dislocation multiplication and depletion. Acta Mater, 2013, 61: 3233–3241

    Article  Google Scholar 

  44. Cai W, Arsenlis A, Weinberger C R, et al. A non-singular continuum theory of dislocation. J Mech Phys Solids, 2006, 54: 561–587

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok-Woo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SW., Cheng, Y., Ryu, I. et al. Cold-temperature deformation of nano-sized tungsten and niobium as revealed by in-situ nano-mechanical experiments. Sci. China Technol. Sci. 57, 652–662 (2014). https://doi.org/10.1007/s11431-014-5502-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5502-8

Keywords

Navigation