Modulating the thermal conductivity of silicon nanowires via surface amorphization

Abstract

We perform non-equilibrium molecular dynamics calculations to study the heat transport in crystalline-core amorphous-shell silicon nanowires (SiNWs). It is found that the thermal conductivity of the core-shell SiNWs is closely related to the cross-sectional area ratio of amorphous shell. Through shell amorphization, an 80% reduction in thermal conductivity compared to crystalline SiNWs with the same size can be achieved, due to the non-propagating heat diffusion in the amorphous region. In contrast to the strong temperature-dependent thermal conductivity of crystalline SiNWs, the core-shell SiNWs only show weak temperature dependence. In addition, an empirical relation is proposed to accurately predict the thermal conductivity of the core-shell SiNWs based on the rule of mixture. The present work demonstrates that SiNWs with an amorphized shell are promising candidates for thermoelectric applications.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Li Y, Qian F, Xiang J, et al. Nanowire electronic and optoelectronic devices. Mater Today, 2006, 9: 18–27

    Article  Google Scholar 

  2. 2

    Wu Z, Zhang Y, Jhon M H, et al. Nanowire failure: Long = brittle and short =ductile. Nano Lett, 2012, 12: 910–914

    Article  Google Scholar 

  3. 3

    Zhang Y. Surface stability and evolution of biaxially strained epitaxial thin films. Appl Phys Lett, 2005, 87: 121916-1–3

    Google Scholar 

  4. 4

    Lu W, Lieber C M. Nanoelectronics from the bottom up. Nature Mater, 2007, 6: 841–850

    Article  Google Scholar 

  5. 5

    Zhang G J, Zhang G, Chua H J, et al. DNA sensing by silicon nanowire: Charge layer distance dependence. Nano Lett, 2008, 8: 1066–1070

    Article  Google Scholar 

  6. 6

    Yu Z, Raman A, Fan S. Fundamental limit of nanophotonic light trapping in solar cells. Proceedings of the National Academy of Sciences, 2010, 107: 17491–17496

    Article  Google Scholar 

  7. 7

    Wong S M, Yu H Y, Li J S, et al. Design high-efficiency Si nanopillar-array-textured thin-film solar cell. IEEE Electron Device Lett, 2010, 31: 335–337

    Article  Google Scholar 

  8. 8

    Li H, Jia R, Ding W, et al. The analysis of electrical performances of nanowires silicon solar cells. Sci China Tech Sci, 2011, 54: 3341–3346

    Article  MATH  Google Scholar 

  9. 9

    Hochbaum A I, Chen R, Delgado R D, et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008, 451: 163–167

    Article  Google Scholar 

  10. 10

    Boukai A I, Bunimovich Y, Kheli J T, et al. Silicon nanowires as efficient thermoelectric materials. Nature, 2008, 451: 168–171

    Article  Google Scholar 

  11. 11

    Zhang G, Zhang Q, Kavitha D, et al. Time dependent thermoelectric performance of a bundle of silicon naowires for on-chip cooler applications. Appl Phys Lett, 2009, 95: 243104-1–3

    Google Scholar 

  12. 12

    Zhang G, Zhang Q, Bui C, et al. Thermoelectric performance of silicon nanowires. Appl Phys Lett, 2009, 94: 213108-1–3

    Google Scholar 

  13. 13

    Tritt T M. Thermoelectric phenomena, materials, and applications. Annu Rev Mater Res, 2011, 41: 433–448

    Article  Google Scholar 

  14. 14

    Wang Z, Zhao R, Chen Y. Monte Carlo simulation of phonon transport in variable cross-section nanowires. Sci China Tech Sci, 2010, 53: 429–434

    Article  MATH  Google Scholar 

  15. 15

    Chen Y, Li D, Yang J, et al. Molecular dynamics study of the lattice thermal conductivity of Kr/Ar superlattice nanowires. Physica B, 2004, 349: 270–280

    Article  Google Scholar 

  16. 16

    Yang N, Zhang G, Li B. Ultralow thermal conductivity of isotope-doped silicon nanowires. Nano Lett, 2008, 8: 276–280

    Article  Google Scholar 

  17. 17

    Chen J, Zhang G, Li B. Tunable thermal conductivity of Si1−x Gex nanowires. Appl Phys Lett, 2009, 95: 073117-1–3

    Google Scholar 

  18. 18

    Chen J, Zhang G, Li B. Remarkable reduction of thermal conductivity in silicon nanotubes. Nano Lett, 2010, 10: 3978–3983

    Article  Google Scholar 

  19. 19

    Yang Y W, Liu X J, Yang J P. Nonequilibrium molecular dynamics simulation for size effects on thermal conductivity of Si nanostructures. Molecular Simulation, 2008, 34: 51–56

    Article  Google Scholar 

  20. 20

    Xie Z X, Chen K Q, Tang L M. Ballistic phonon thermal transport in a cylindrical semiconductor nanowire modulated with nanocavity. J Appl Phys, 2011, 110: 124321-1–8

    Article  Google Scholar 

  21. 21

    Peng X, Chen K Q, Wan Q, et al. Quantized thermal conductance at low temperatures in quantum wire with catenoidal contacts. Phys Rev B, 2010, 81: 195317-1–6

    Google Scholar 

  22. 22

    Peng X F, Chen K Q. Ballistic thermal transport in quantum wire modulated with two coupling quantum dots. Physica E, 2010, 42: 1968–1972

    Article  Google Scholar 

  23. 23

    Peng X F, Wang X J. Quantum restricted effects on ballistic thermal conductance associated with six types of vibration modes in nanowire superlattice. J Appl Phys, 2011, 110: 044305-1–8

    Google Scholar 

  24. 24

    Li H P, Sarkar A D, Zhang R Q. Surface-nitrogenation-induced thermal conductivity attenuation in silicon nanowires. Europhys Lett, 2011, 96: 56007-1–6

    Google Scholar 

  25. 25

    Chen J, Zhang G, Li B. A universal gauge for thermal conductivity of silicon nanowires with different cross sectional geometries. J Chem Phys, 2011, 135: 204705-1–7

    Google Scholar 

  26. 26

    Tang J, Huo Z, Brittman S, et al. Solution-processed core-shell nanowires for efficient photovoltaic cells. Nature Nanotechnol, 2011, 6: 568–572

    Article  Google Scholar 

  27. 27

    Lu L X, Bharathi M S, Zhang Y W. Self-assembly of ordered epitaxial nanostructures on polygonal nanowires. Nano Lett, 2013, 13: 538–542

    Article  Google Scholar 

  28. 28

    Vastola G, Shenoy V B, Zhang Y W. Controlling the interface composition of core-shell and axial heterojunction nanowires. J Appl Phys, 2012, 112: 064311-1–6

    Article  Google Scholar 

  29. 29

    Yang R, Chen G. Thermal conductivity modeling of core-shell and tubular nanowires. Nano Lett, 2005, 5: 1111–1115

    Article  Google Scholar 

  30. 30

    Chen J, Zhang G, Li B. Phonon coherent resonance and its effect on thermal transport in core-shell nanowires. J Chem Phys, 2011, 135: 104508-1–8

    Google Scholar 

  31. 31

    Hu M, Giapis K P, Goicochea J V, et al. Significant reduction of thermal conductivity in Si/Ge core-shell nanowires. Nano Lett, 2011, 11: 618–623

    Article  Google Scholar 

  32. 32

    Chen J, Zhang G, Li B. Impacts of atomistic coating on thermal conductivity of germanium nanowires. Nano Lett, 2012, 12: 2826–2832

    Article  Google Scholar 

  33. 33

    Wingert M C, Chen Z C Y, Dechaumphai E, et al. Thermal conductivity of Ge and Ge-Si core-shell nanowires in the phonon confinement regime. Nano Lett, 2011, 11: 5507–5513

    Article  Google Scholar 

  34. 34

    Moon J, Kim J H, Chen Z C Y, et al. Gate-modulated thermoelectric power factor of hole gas in Ge-Si core-shell nanowires. Nano Lett, 2013, 13: 1196–1202

    Article  Google Scholar 

  35. 35

    Chen H, Xu J, Chen P, et al. Bulk synthesis of crystalline and crystalline core/amorphous shell silicon nanowires and their application for energy storage. ACS Nano, 2011, 5: 8383–8390

    Article  Google Scholar 

  36. 36

    Tersoff J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys Rev B, 1989, 39: 5566–5568

    Article  Google Scholar 

  37. 37

    Plimpton S J. Fast parallel algorithms for short-range molecular dynamics. J Comp Phys, 1995, 117: 1–19

    Article  MATH  Google Scholar 

  38. 38

    Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys, 1984, 81: 511–519

    Article  Google Scholar 

  39. 39

    Park S H, Kim H J, Lee D B, et al. Heterogeneous crystallization of amorphous silicon expedited by external force fields: A molecular dynamics study. Superlatt Microstruct, 2004, 35: 205–215

    Article  Google Scholar 

  40. 40

    Volz S G, Chen G. Molecular dynamics simulation of thermal conductivity of silicon nanowires. Appl Phys Lett, 1999, 75: 2056-1–3

    Article  Google Scholar 

  41. 41

    He Y, Galli G. Microscopic origin of the reduced thermal conductivity of silicon nanowire. Phys Rev Lett, 2012, 108: 215901-1–5

    Google Scholar 

  42. 42

    Hu M, Zhang X, Giapis P, et al. Thermal conductivity reduction in core-shell nanowires. Phys Rev B, 2011, 84: 085442-1–9

    Google Scholar 

  43. 43

    Markussen T. Surface disordered Ge-Si core-shell nanowires as efficient thermoelectric materials. Nano Lett, 2012, 12: 4698–4704

    Article  Google Scholar 

  44. 44

    Schelling P K, Phillpot S R, Keblinski P. Comparison of atomic-level simulation methods for computing thermal conductivity. Phys Rev B, 2002, 65: 144306

    Article  Google Scholar 

  45. 45

    Liu X, Zhang G, Pei Q X, et al. Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons. Appl Phys Lett, 2013, 103: 133113-1–5

    Google Scholar 

  46. 46

    Zhang G, Zhang Y W. Thermal conductivity of silicon nanowires: From fundamentals to phononic engineering. Phys Status Solidi RRL, 2013, 7: 754–766

    Article  Google Scholar 

  47. 47

    He Y, Donadio D, Galli G. Heat transport in amorphous silicon: Interplay between morphology and disorder. Appl Phys Lett, 2011, 98: 144101-1–3

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gang Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, X., Zhang, G., Pei, Q. et al. Modulating the thermal conductivity of silicon nanowires via surface amorphization. Sci. China Technol. Sci. 57, 699–705 (2014). https://doi.org/10.1007/s11431-014-5496-2

Download citation

Keywords

  • thermal conductivity
  • thermoelectric
  • molecular dynamics
  • silicon nanowire