Skip to main content
Log in

Preparation and electrochemical performance of MWCNTs@MnO2 nanocomposite for lithium ion batteries

  • Article
  • Special Topic: Nanoenergy and Nanosystem
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Tubular nanocomposite with interconnected MnO2 nanoflakes coated on MWCNTs (MWCNTs@MnO2) was fabricated by an aqueous solution method at 80°C. Scanning electron microscopy, X-ray diffraction and galvanostatic charge-discharge tests were used to characterize the structures and electrochemical performances of the as-prepared nanocomposite. The capacity reaches 1233.6 mA h g−1 at a current density of 100 mA g−1 for the first discharge, and it can still maintain a capacity of 633.1 mA h g−1 after 100 charge-discharge cycles. The results show that MWCNTs with good electrical conductivity as anchors of MnO2 can provide fast electron transport channels for MnO2 in the electrochemical reactions, and the as-prepared MWCNTs@MnO2 nanocomposite is a potential anode material for lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tian W, Yang H S, Fan X Y, et al. Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature. J Hazard Mater, 2011, 188: 105–109

    Article  Google Scholar 

  2. Zhou M, Zhang X, Wei J M, et al. Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures. J Phys Chem, 2011, 115: 1398–1402

    Google Scholar 

  3. Li Y, Xie H Q, Wang J F, et al. Preparation and electrochemical performances of α-MnO2 nanorod for supercapacitor. Mater Lett, 2011, 65: 403–405

    Article  Google Scholar 

  4. Liu H W, Tan L. A novel method for preparing lithium manganese oxide nanorods from nanorod precursor. J Nanopart Res, 2010, 12: 301–305

    Article  Google Scholar 

  5. Jiang H, Zhao T, Ma J, et al. Ultrafine manganese dioxide nanowire network for high-performance supercapacitors. Chem Commun, 2011, 47: 1264–1266

    Article  Google Scholar 

  6. Wang X H, Ni S B, Zhou G, et al. Facile synthesis of ultra-long α-MnO2 nanowires and their microwave absorption properties. Mater Lett, 2010, 64: 1496–1498

    Article  Google Scholar 

  7. Zhang H, Cao G P, Wang Z Y, et al. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett, 2008, 8: 2664–2668

    Article  Google Scholar 

  8. Yan Y J, Huang C D. Effect of synthetical conditions, morphology, and crystallographic structure of MnO2 on its electrochemical behavior. J Solid State Electrochem, 2010, 14: 1293–1301

    Article  Google Scholar 

  9. He P, Luo J Y, Yang X H, et al. Preparation and electrochemical profile of Li0.33MnO2 nanorods as cathode material for secondary lithium batteries. Electrochim Acta, 2009, 54: 7345–7349

    Article  Google Scholar 

  10. Lee H W, Muralidharan P, Ruffo R, et al. Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett, 2010, 10: 3852–3856

    Article  Google Scholar 

  11. Wei W F, Cui X W, Mao X H, et al. Morphology evolution in anodically electrodeposited manganese oxide nanostructures for electrochemical supercapacitor applications effect of supersaturation ratio. Electrochim Acta, 2011, 56: 1619–1628

    Article  Google Scholar 

  12. Liu D W, Garcia B B, Zhang Q F, et al. Mesoporous hydrous manganese dioxide nanowall arrays with large lithium ion energy storage capacities. Adv Funct Mater, 2009, 19: 1015–1023

    Article  Google Scholar 

  13. Wu G T, Wang C B, Zhang X B, et al. Structure and lithium insertion properties of carbon nanotubes. J Electrochem Soc, 1999, 146: 1696–1701

    Article  Google Scholar 

  14. Kim B, Im J, Lee B Y, et al. Carbon nanotube-metal nano-laminate for enhanced mechanical strength and electrical conductivity. Carbon, 2011, 49: 2549–2554

    Article  Google Scholar 

  15. Vazquez E, Prato M. Carbon nanotubes and microwaves: Interactions, Responses, and Applications. ACS Nano, 2009, 3: 3819–3824

    Article  Google Scholar 

  16. Masarapu C, Subramanian V, Zhu H W, et al. Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li-ion batteries. Adv Funct Mater, 2009, 19: 1008–1014

    Article  Google Scholar 

  17. Xia H, Lai M O, Lu L. Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries. J Mater Chem, 2010, 20: 6896–6902

    Article  Google Scholar 

  18. Pushpendra K, Kedar S. Element directed aqueous solution synthesis of copper telluride nanoparticles, characterization, and optical properties. Crystal Growth Design, 2009, 9: 3089–3094

    Article  Google Scholar 

  19. Reddy A L M, Shaijumon M M, Gowda S R, et al. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett, 2009, 9: 1002–1006

    Article  Google Scholar 

  20. Wang X H, Li X W, Sun X L, et al. Nanostructured NiO electrode for high rate Li-ion batteries. J Mater Chem, 2011, 21: 3571–3573

    Article  Google Scholar 

  21. Varghese B, Reddy M V, Zhu Y W, et al. Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chem Mater, 2008, 20: 3360–3367

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DeYan He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Li, X., Wei, Z. et al. Preparation and electrochemical performance of MWCNTs@MnO2 nanocomposite for lithium ion batteries. Sci. China Technol. Sci. 57, 1077–1080 (2014). https://doi.org/10.1007/s11431-014-5468-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5468-6

Keywords

Navigation