Skip to main content
Log in

Lubricating a bright future: Lubrication contribution to energy saving and low carbon emission

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Both the academic society and the industry are hunting for new energy forms for the future. However, the world should not forget the conventional technologies that contribute to the sustainable society by technical innovations. Among them, lubrication plays a significant role in energy saving and in low CO2 emission by increasing the fuel efficiency and by prolonging the service life of machines. With the advance of novel synthetic approaches, and nanoscience and technologies, novel lubrication oils and additives and their formulations are being developed to reduce friction and wear, and novel surface treatment routes and surface coatings are invented and provide more efficient lubrication. These technologies create tremendous chances for machines to work more efficiently with low energy consumption. Here we review the recent progresses and challenges associated with some novel lubrication techniques that include novel surface treatment (such as texturing, high-performance nanocomposite coatings, adapting coating), tribology design (solid and liquid lubrication), energy-conserving engine oil and novel lubricants and formula (such as ionic liquids, low S, P content additives) which are to be adopted to enhance the fuel efficiency to achieve energy saving and low carbon emission. There is increased demand to replace fossil lubricants by degradable green lubricants. Specially designed coatings can reduce drag significantly during navigation of both airplanes and ships. All these aspects will be also reviewed in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. British Petroleum (BP), Statistical Review of World Energy.June 2011, page 42 http://www.bp.com/assets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_review_2011/STAGING/local_assets/pdf/statistical_review_of_world_energy_full_report_2011

  2. Liu G F, Chen X L, Riedel R, et al. Green technology foresight on automobile technology in China. Technol Anal Strat, 2011, 23(6): 683–696

    Google Scholar 

  3. Shafiullah G M, Amanullah M T O, Shawkat Ali A B M, et al. Prospects of renewable energy-A feasibility study in the Australian context. Renew Energ, 2012, 39(1): 183–197

    Google Scholar 

  4. Poizot P, Dolhem F. Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energ Environ Sci, 2011, 4(6): 2003–2019

    Google Scholar 

  5. Okkerse C, Bekkum H V. From fossil to green. Green Chem, 1999, 1(2): 107–114

    Google Scholar 

  6. Jacobson M Z. Review of solutions to global warming, air pollution, and energy security. Energ Environ Sci, 2009, 2: 148–173

    Google Scholar 

  7. Bhushan B. Introduction to Tribology. New York: John Wiley & Sons Inc, 2002

    Google Scholar 

  8. Xue Q J, Zhang Y Z, Li J. Development of industrial tribology in China. Tribol Online, 2007, 2(1): 10–13

    Google Scholar 

  9. Zhou F, Liang Y M, Liu W M. Ionic liquid lubricants: designed chemistry for engineering applications. Chem Soc Rev, 2009, 38(9): 2590–2599

    Google Scholar 

  10. Jost H P. Lubrication (Tribology), Education and Research, (Jost Report). Department of Education and Science, HMSO. London, 1966

    Google Scholar 

  11. Jost H P, Schofield J. Energy saving through tribolog: A technoeconomic study. Proc lnstn Mech Engrs, 1981, 195: 151–173

    Google Scholar 

  12. Nosonovsky M, Bhushan B. Green tribology: principles, research areas and challenges. P Roy Soc A-Math Phy, 2010, 368(1929): 4677–4694

    MathSciNet  Google Scholar 

  13. Hamrock B J, Schmid S R, Jacobson B O. Fundamentals of Fluid Film Lubrication. 2nd ed. Boca Raton: CRC Press Inc., 2004

    Google Scholar 

  14. Dowson D. History of Tribology. 2nd ed. London: Professional Engineering Publishing, 1998

    Google Scholar 

  15. Mortier R M, Orzulik S T. Chemistry and Technology of Lubricants. 2nd ed. New York: Blackie Academic and Professional, 1997

    Google Scholar 

  16. Boyde S. Green lubricants. Environmental benefits and impacts of lubrication. Green Chem, 2002, 4(4): 293–307

    Google Scholar 

  17. Wilk M A, Abraham W D, Dohner B R. An investigation into the effect of zinc dithiophoaphate on ASTM sequence VIA fuel economy. SAE Technical Paper 961914, 1996, doi:10.4271/961914

    Google Scholar 

  18. Rizvi S Q A. A Comprehensive Review of Lubricant Chemistry, Technology, Selection, and Design. Baltimore: ASTM International, 2009

    Google Scholar 

  19. Watanabe H I, Dam W V, Parsons G, et al. A fuel economy study in heavy duty diesel engine lubricants. Lubrication Oil, 2011, 26(4): 10–17

    Google Scholar 

  20. Wu X L. Lubrication Design Handbook. Beijing: Chemical Industry Press, 2006

    Google Scholar 

  21. Bartzl W J. Gear oil influences on efficiency of gear and fuel economy of cars. P I Mech Eng D-J Aut, 2000, 214(2): 189–196

    Google Scholar 

  22. Gunstone F. Fatty Acid and Lipid Chemistry. London: Blackie Academic and Professional, 1996

    Google Scholar 

  23. Archbutt L, Deeley R M. Lubrication and Lubricants. 5th ed. London: Charles Griffin & Co, 1927

    Google Scholar 

  24. Wang Y M, Wang H. Lubricating Materials and Lubrication Technology. Beijing: Chemical Industry Press, 2005

    Google Scholar 

  25. Merryweahter S, Zweifel D. New oil soluble polyalkylene glycos for energy saving lubricant application. In: Proc the 4th World Tribology Congress, Kyoto, Japan, 2009. 37

    Google Scholar 

  26. Anastopoulos G, Kalligeros S, Schinas P, et al. Effect of dicarboxylic acid esters on the lubricity of aviation kerosene for use in CI engines. Friction, 2013, 3: 271–278

    Google Scholar 

  27. Wu R, Knapik M. Determination and application of stribeck curve in development of steel cold rolling lubricants. Iron Steel Technology, AIS Tech 2009, 2010, 2: 52–57

    Google Scholar 

  28. Rudnick L R, Balusamy V. Synthetic lubricants and high-performance functional fluids. New York: Marcel Dekker, Inc, 2004

    Google Scholar 

  29. Thom R, Kollman K, Frend M. Extended oil drain intervals: Conservation of resources or reduction of engine life. SAE International Congress, Detroit, Feb. 27–March 2, 1996

    Google Scholar 

  30. Reported as Lube Tech Report, Fuels Lubes Int, 1995.11–13

  31. Rudnick L R. Lubricant Additives: Chemistry and Applications. New York: Marcel Dekker, Inc., 2003

    Google Scholar 

  32. Benda R, Bullen J. Polyalphaolefins-base fluids for high-performance lubricants. J Synth Lubr, 1996, 13(1): 41–57

    Google Scholar 

  33. Coffin P S, Lindsay C M, Mills A J, et al. The application of synthetic fluids to automotive lubricant development: trends today and tomorrow. J Synth Lubr, 1990, 7: 123–143

    Google Scholar 

  34. Dressler H, Meilus A A. Synthetic oils. U. S. 4604491, 1986

  35. Bridwell B W, Johnson C E. Mono-alkylation of naphthalene. U. S. 3959399, 1976

  36. Mc Gulre S E, Riddle J L, Nicks G E, et al. Prepartion of synthetic hydrocarbon lubricants. U. S. 3909432, 1975

  37. Ye C F, Liu W M, Chen Y X, et al. Room-temperature ionic liquids: a novel versatile lubricant. Chem Commun, 2001, 21: 2244–2245

    Google Scholar 

  38. Earle M J, Seddon K R. Ionic liquids green solvents for the future. Pure Appl Chem, 2000, 72(7): 1391–1398

    Google Scholar 

  39. Hagiwara R, Ito Y. Room temperature ionic liquids of alkylimidazolium cations and fuoroanions. J Fluorine Chem, 2000, 105(2): 221–227

    Google Scholar 

  40. Lu Q M, Wang H Z, Ye C F, et al. Room temperature ionic liquid 1-ethyl-3-hexylimidazolium-bis(trifluoromethylsulfonyl)-imide as lubricant for steel-steel contact. Tribol Int, 2004, 37(7): 547–552

    Google Scholar 

  41. Weng L J, Liu X Q, Liang Y M, et al. Effect of tetraalkylphosphonium based ionic liquids as lubricants on the tribological performance of a steel-on-steel system. Tribol Lett, 2006, 26(1): 11–17

    Google Scholar 

  42. Xia Y Q, Wang S J, Zhou F, et al. Tribological properties of plasma nitrided stainless steel against SAE52100 steel under ionic liquid lubrication condition. Tribol Int, 2006, 39(7): 635–640

    Google Scholar 

  43. Torimoto T, Tsuda T, Okazaki K I, et al. New frontiers in materials science opened by ionic liquids. Adv Mater, 2010, 22(11): 1196–1221

    Google Scholar 

  44. Minami I, Inada T, Sasaki R, et al. Tribo-chemistry of phosphoniumderived ionic liquids. Tribol Lett, 2010, 40(2): 225–235

    Google Scholar 

  45. Minami I. Ionic liquids in tribology. Molecules, 2009, 14(6): 2286–2305

    Google Scholar 

  46. Jiménez A E, Bermúdez M D. Ionic liquids as lubricants of titanium Steel contact. Part 2: Friction, wear and surface interactions at high temperature. Tribol Lett, 2009, 37(2): 431–443

    Google Scholar 

  47. Bermúdez M D, Jiménez A E, Sanes J, et al. Ionic liquids as advanced lubricant fluids. Molecules, 2009, 14(8): 2888–2908

    Google Scholar 

  48. Yu B, Zhou F, Pang C J, et al. Tribological evaluation of α, ω′-diimidazoliumalkylene hexafluorophosphate ionic liquid and benzotriazole as additive. Tribol Int, 2008, 41(8): 797–801

    Google Scholar 

  49. Yao M H, Liang Y M, Xia Y Q, et al. High-temperature tribological properties of 2-substituted imidazolium ionic liquids for Si3N4-steel contacts. Tribol Lett, 2008, 32(2): 73–79

    Google Scholar 

  50. Minami I, Kita M, Kubo T, et al. The tribological properties of ionic liquids composed of trifluorotris(pentafluoroethyl) phosphate as a hydrophobic anion. Tribol Lett, 2008, 30(3): 215–223

    Google Scholar 

  51. Jiménez A E, Bermúdez M D. Ionic liquids as lubricants of titaniumsteel contact. Tribol Lett, 2008, 33(2): 111–126

    Google Scholar 

  52. Mu Z G, Zhou F, Zhang S X, et al. Effect of the functional groups in ionic liquid molecules on the friction and wear behavior of aluminum alloy in lubricated aluminum-on-steel contact. Tribol Int, 2005, 38(8): 725–731

    Google Scholar 

  53. Wang H Z, Lu Q M, Ye C F, et al. Friction and wear behaviors of ionic liquid of alkylimidazolium hexafluorophosphates as lubricants for steel/steel contact. Wear, 2004, 256(1–2): 44–48

    Google Scholar 

  54. Liu W M, Ye C F, Gong Q Y, et al. Tribological performance of room-temperature ionic liquids as lubricant. Tribol Lett, 2002, 13(2): 81–85

    Google Scholar 

  55. Song Z H, Liang Y M, Fan M J, et al. Lithium-based ionic liquids as novel lubricant additives for multiply alkylated cyclopentanes (MACs). Friction, 2013, 3: 222–231

    Google Scholar 

  56. Qu J, Blau P J, Dai S, et al. Ionic liquids as novel lubricants and additives for diesel engine applications. Tribol Lett, 2009, 35(3): 181–189

    Google Scholar 

  57. Qu, J, Truhan J J, Dai S, et al. Ionic liquids with ammonium cations as lubricants or additives. Tribol Lett, 2006, 22(3): 207–214

    Google Scholar 

  58. Predel T, Pohrer B, Schlücker E. Ionic liquids as alternative lubricants for special applications. Chem Eng Technol, 2010, 33(1): 132–136

    Google Scholar 

  59. Bronshteyn L A, Kreiner J H. Energy efficiency of industrial oils. Tribol Trans, 1999, 42(4): 771–776

    Google Scholar 

  60. Vipper A B, Bartz W, Karaulov A K, et al. Antifriction action of lubricant additives. Lubr Sci, 1995, 7(3): 247–259

    Google Scholar 

  61. Martin J M, Matta C, Bouchet M I D B, et al. Mechanism of friction reduction of unsaturated fatty acids as additives in diesel fuels. Friction, 2013, 3: 252–258

    Google Scholar 

  62. Zhang J, Jin Y L, Ma X G, et al. Modern Lubrication Technique. Beijing: Metallurgical Industry Press, 2008. 58

    Google Scholar 

  63. Jiménez A E, Bermúdez M D, Carrion F, et al. Room temperature ionic liquids as lubricant additives in steel-aluminium contacts: Influence of sliding velocity, normal load and temperature. Wear, 2006, 261(3–4): 347–359

    Google Scholar 

  64. Jiménez A E, Bermúdez M D. Imidazolium ionic liquids as additives of the synthetic ester propylene glycol dioleate in aluminium-steel lubrication. Wear, 2008, 265(5-6): 787–798

    Google Scholar 

  65. Priest M, Fox M F. Tribological properties of ionic liquids as lubricants and additives. Part 1: Synergistic tribofilm formation between ionic liquids and tricresyl phosphate. P I Mech Eng J-J Eng, 2008, 222(3): 291–303

    Google Scholar 

  66. Battez A H, González R, Viesca J L, et al. Tribological behaviour of two imidazolium ionic liquids as lubricant additives for steel/steel contacts. Wear, 2009, 266(11-12): 1224–1228

    Google Scholar 

  67. Yao M H, Liang Y M, Xia Y Q, et al. Bisimidazolium ionic liquids as the high-performance antiwear additives in poly(ethylene glycol) for steel-steel contacts. ACS Appl Mater Inter, 2009, 1(2): 467–471

    Google Scholar 

  68. Zhang H B, Xia Y Q, Yao M H, et al. The influences of methyl group at C2 position in imidazolium ring on tribological properties. Tribol Lett, 2009, 36(2): 105–111

    Google Scholar 

  69. Cai M R, Liang Y M, Yao M H, et al. Imidazolium ionic liquids as antiwear and antioxidant additive in poly(ethylene glycol) for steel/steel contacts. ACS Appl Mater Inter, 2010, 2(3): 870–876

    Google Scholar 

  70. Cai M R, Zhao Z, Liang Y M, et al. Alkyl imidazolium ionic liquids as friction reduction and anti-wear additive in polyurea grease for steel/steel contacts. Tribol Lett, 2010, 40(2): 215–224

    Google Scholar 

  71. Wornyoh E Y A, Jasti V K, Fred Higgs C. A review of dry particulate lubrication: Powder and granular materials. J Tribol, 2007, 129(2): 438–449

    Google Scholar 

  72. Zhou J F, Wu Z S, Zhang Z J, et al. Tribological behavior and lubricating mechanism of Cu nanoparticles in oil. Tribol Lett, 2000, 8(4): 213–218

    Google Scholar 

  73. Tarasov S, Kolubaev A, Belyaev S, et al. Study of friction reduction by nanocopper additives to motor oil. Wear, 2002, 252(1–2): 63–69

    Google Scholar 

  74. Zhao Y, Zhang Z, Dang H. Fabrication and tribological properties of Pb nanoparticles. J Nanopart Res, 2004, 6: 47–51

    Google Scholar 

  75. Yu H, Xu Y, Shi P, et al. Tribological properties and lubricating mechanisms of Cu nanoparticles in lubricant. T Nonferr Metal Soc, 2008, 18(3): 636–641

    Google Scholar 

  76. Zhang M, Wang X, Fu X, et al. Investigation of electrical contact resistance of ag nanoparticles as additives added to peg 300. Tribol T, 2009, 52(2): 157–164

    Google Scholar 

  77. Zhang M, Wang X, Liu W, et al. Performance and anti-wear mechanism of Cu nanoparticles as lubricating oil additives. Ind Lubr Tribol, 2009, 61(6): 311–318

    MathSciNet  Google Scholar 

  78. Red’kin V E. Lubricants with ultradisperse diamond-graphite powder. Chem Tech Fuels oils, 2004, 40(3): 164–170

    Google Scholar 

  79. Yao Y, Wang X, Guo J, et al. Tribological property of onion-like fullerenes as lubricant additive. Mater Lett, 2008, 62(16): 2524–2527

    Google Scholar 

  80. Cumings J, Zettl A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science, 2000, 289: 602–604

    Google Scholar 

  81. Kis A, Jensen K, Aloni S. Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes. Phys Rev Lett, 2006, 97: 025501–4

    Google Scholar 

  82. Guo W L, Zhong W Y, Dai Y T, et al. Coupled defect-size effects on interlayer friction in multiwalled carbon nanotubes. Phys Rev Lett, 2005, 72: 075409–10

    Google Scholar 

  83. Liu L, Fang Z, Gu A, et al. Lubrication effect of the paraffin oil filled with functionalized multiwalled carbon nanotubes for bismaleimide resin. Tribol Lett, 2011, 42: 59–65

    Google Scholar 

  84. Guo Y F, Guo W L, Chen C F. Modifying atomic-scale friction between two graphene sheets: A molecular-force-field study. Phys Rev B, 2007, 76: 155429–5

    Google Scholar 

  85. Eswaraiah V, Sankaranarayanan V, Ramaprabhu S. Graphene-based engine oil nanofluids for tribological applications. ACS Appl Mater Interf, 2011, 3: 4221–4227

    Google Scholar 

  86. Zhang Z J, Zhang J, Xue Q J. Synthesis and characterization of a molybdenum disulfide nanocluster. J Phys Chem, 1994, 98(49): 12973–12977

    Google Scholar 

  87. Rapoport L, Lvovsky M, Lapsker I, et al. Friction and wear of bronze powder composites including fullerene-like WS2 nanoparticles. Wear, 2001 (1–2), 249: 149–156

    Google Scholar 

  88. Tenne R, Margulis L, Genut M, et al. Polyhedral and cylindrical structures of tungsten disulphide. Natrue, 1992, 360: 444–446

    Google Scholar 

  89. Golan Y, Drummond C, Homyonfer M, et al. Microtribology and direct force measurement of WS2 nested fullerene-like nanostructures. Adv Mater, 1999, 11(11): 934–937

    Google Scholar 

  90. Greenberg R, Halperin G, Etsion I, et al. The effect of WS2 nanoparticles on friction reduction in various lubrication regimes. Tribol Lett, 2004, 17(2): 179–186

    Google Scholar 

  91. Ye W, Cheng T, Ye Q, et al. Preparation and tribological properties of tetrafluorobenzoic acid-modified TiO2 nanoparticles as lubricant additives. Mater Sci Eng A, 2003, 359(1–2): 82–85

    Google Scholar 

  92. Zhang J Y, Yang S R, Xue Q J. Preparation and characterization of Ni(OH)2 nanoparticles coated with dialkyldithiophosphate. J Mater Res, 2000, 15(2): 541–545

    Google Scholar 

  93. Hernandezbattez A, Fernandezrico J, Navasarias A, et al. The tribological behaviour of ZnO nanoparticles as an additive to PAO. Wear, 2006, 261(3–4): 256–263

    Google Scholar 

  94. Hernandezbattez A, Gonzalez R, Viesca J, et al. Cuo, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear, 2008, 265(3–4): 422–428

    Google Scholar 

  95. Song H, Zhang Z. Study on the tribological behaviors of the phenolic composite coating filled with modified nano-TiO2. Tribol Int, 2008, 41(5): 396–403

    Google Scholar 

  96. Hu Z S, Dong J X. Study on antiwear and reducing friction additive of nanometer titanium borate. Wear, 1998, 216(1): 87–91

    MathSciNet  Google Scholar 

  97. Xue Q J, Wang Q H. Wear mechanisms of polyetheretherketone composites filled with various kinds of SiC. Wear, 1997, 213(1-2): 54–58

    Google Scholar 

  98. Hu Z S, Dong J X, Chen G X, et al. Preparation and tribological properties of nanoparticle lanthanum borate. Wear, 2000, 243(1–2): 43–47

    Google Scholar 

  99. Hu Z S, Lai R, Lou F, et al. Preparation and tribological properties of nanometer magnesium borate as lubricating oil additive. Wear, 2002, 252(5–6): 370–374

    Google Scholar 

  100. Ji X, Chen Y, Zhao G, et al. Tribological properties of CaCO3 nanoparticles as an additive in lithium grease. Tribol Lett, 2010, 41(1): 113–119

    Google Scholar 

  101. Zhang M, Wang X, Fu X, et al. Performance and anti-wear mechanism of CaCO3 nanoparticles as a green additive in poly-alpha-olefin. Tribol Int, 2009, 42(7): 1029–1039

    Google Scholar 

  102. Gu C, Li Q, Gu Z, et al. Study on application of CeO2 and CaCO3 nanoparticles in lubricating oils. J Rare Earth, 2008, 26(2): 163–167

    MathSciNet  Google Scholar 

  103. Lian Y F, Xue Q J, Zhang X H, et al. The mechanism of synergism between ZDDP and CeF3 additives. Lubr Sci, 1995, 7(261): 261–272

    Google Scholar 

  104. Zhou J F, Wu Z S, Zhang Z J, et al. Study on an antiwear and extreme pressure additive of surface coated LaF3 nanoparticles in liquid paraffin. Wear, 2001, 249(5–6): 333–337

    Google Scholar 

  105. Zhang Z F, Yu L G, Liu W M, et al. The effect of LaF3 nanocluster modified with succinimide on the lubricating performance of liquid paraffin for steel-on-steel system. Tribol Int, 2001, 34(2): 83–88

    Google Scholar 

  106. Wang L, Zhang M, Wang X, et al. The preparation of CeF3 nanocluster capped with oleic acid by extraction method and application to lithium grease. Mater Res Bull, 2008, 43(8-9): 2220–2227

    Google Scholar 

  107. Duan B. A study on colloidal PST-A new type of water-based lubrication additive. Wear, 1999, 236(1–2): 235–239

    Google Scholar 

  108. Duan B, Lei H. The effect of particle size on the lubricating properties of colloidal polystyrene used as water based lubrication additive. Wear, 2001, 249(5–6): 528–532

    Google Scholar 

  109. Chen W G, Gao Y Z, Zhang H C, et al. Self-repairing characteristics of superfine powder of hydroxyl magnesium silicate on a worn steel surface. J Chin Ceram Soc, 2010, 38: 762–767

    Google Scholar 

  110. National Lubricating Grease Institute (NLGI). Grease Production Survey Report For the Calendar Years 2009, 2007 and 2006. 2010, https://www.nlgi.org/

    Google Scholar 

  111. Li W, Kong X H, Ruan M, et al. Green waxes, adhesives and lubricants. Philos Transact A-Math Phys Eng Sci, 2010, 368(1929): 4869–4890

    Google Scholar 

  112. Haseeb A S M A, Fazal M A, Jahirul M I, et al. Compatibility of automotive materials in biodiesel: A review. Fuel, 2011, 90(3): 922–931

    Google Scholar 

  113. Sharma B K, Liu Z S, Adhvaryu A, et al. One-pot synthesis of chemically modified vegetable oils. J Agric Food Chem, 2008, 56: 3049–3056

    Google Scholar 

  114. Shahid E M, Jamal Y. A review of biodiesel as vehicular fuel. Renew Sust Energ Rev, 2008, 12(9): 2484–2494

    Google Scholar 

  115. Quinchia L A, Delgado M A, Franco J M, et al. Low-temperature flow behaviour of vegetable oil-based lubricants. Ind Crop Prod, 2012, 37(1): 383–388

    Google Scholar 

  116. Aluyor E O, Obahiagbon K O, Ori-jesu M. Biodegradation of vegetable oils: A review. Sci Res Essay, 2009, 4(6): 543–548

    Google Scholar 

  117. Erhan S Z, Sharma B K, Perez J M. Oxidation and low temperature stability of vegetable oil-based lubricants. Ind Crop Prod, 2006, 24(3): 292–299

    Google Scholar 

  118. Salimon J, Salih N, Yousif E. Biolubricants: Raw materials, chemical modifications and environmental benefits. Eur J Lipid Sci Tech, 2010, 112(5): 519–530

    Google Scholar 

  119. Arngek A, Vitintin J. Lubricating properties of rapeseed-based oils. J Synth Lubr, 1999, 16(4): 281–296

    Google Scholar 

  120. Ng J H, Ng H K, Gan S. Advances in biodiesel fuel for application in compression ignition engines. Clean Technol Envir, 2009, 12(5): 459–493

    Google Scholar 

  121. Regueira T, Lugo L, Fandiño O, et al. Compressibilities and viscosities of reference and vegetable oils for their use as hydraulic fluids and lubricants. Green Chem, 2011, 13(5): 1293–1302

    Google Scholar 

  122. Shashidhara Y M, Jayaram S R. Vegetable oils as a potential cutting fluid-An evolution. Tribol Int, 2010, 43(5-6): 1073–1081

    Google Scholar 

  123. Fox N, Stachowiak G. Vegetable oil-based lubricants-A review of oxidation. Tribol Int, 2007, 40(7): 1035–1046

    Google Scholar 

  124. Asadauskas S J, Grigucericiene A, Stoncius A. Review of late stages of oxidation in vegetable oil lubricant basestocks. Proceedings of the International Conference BALTTRIB, 2007

    Google Scholar 

  125. Salimon J, Salih N. Chemical modification of oleic acid oil for biolubricant industrial applications. Aust J Basic Appl Sci, 2010, 4: 1999–2003

    Google Scholar 

  126. Wang L, Wang T. Chemical modification of partially hydrogenated vegetable oil to improve its functional properties for candles. J Am Oil Chem Soc, 2007, 84(12): 1149–1159

    Google Scholar 

  127. Uosukainena E, Linkoa Y Y, Lämsäb M, et al. Transesterification of trimethylolpropane and rapeseed oil methyl ester to environmentally acceptable lubricants. JAOCS, 1998, 75(11): 1557–1563

    Google Scholar 

  128. Salimon J, Salih N. Improved low temperature properties of 2-ethylhexyl 9 (10)-hydroxy-10 (9)-acyloxystearate derivatives Eur J Sci Res, 2009, 31(4): 583–591

    Google Scholar 

  129. Schmidt M A, Dietrich C R, Cahoon E B. Biotechnological enhancement of soybean oil for lubricant applications. Biotechnological Enhancement of Soybean Oil for Lubricant Applications Taylor & Francis Group, LLC, 2006

    Google Scholar 

  130. Kralova I, Sjöblom J. Biofuels-renewable energy sources: A review. J Disper Sci Technol, 2010, 31(3): 409–425

    Google Scholar 

  131. Moser B R. Biodiesel production, properties, and feedstocks. In Vitro Cell Dev Biol-Plant, 2009, 45(3): 229–266

    Google Scholar 

  132. Yusuf N N A N, Kamarudin S K, Yaakub Z. Overview on the current trends in biodiesel production. Energ Convers Manage, 2011, 52(7): 2741–2751

    Google Scholar 

  133. Dresel W H. Biologically degradable lubricating greases based on industrial crops. Ind Crop Prod, 1994, 2(4): 281–288

    Google Scholar 

  134. Adhvaryu A, Sung C, Erhan S Z. Fatty acids and antioxidant effects on grease microstructures. Ind Crop Prod, 2005, 21(3): 285–291

    Google Scholar 

  135. Sánchez R, Franco J M, Delgado M A, et al. Development of new green lubricating grease formulations based on cellulosic derivatives and castor oil. Green Chem, 2009, 11(5): 686–693

    Google Scholar 

  136. Wang X L, Kato K, Adachi K, et al. The effect of laser texturing of sic surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed. Tribol Int, 2001, 34(10): 703–711

    Google Scholar 

  137. Etsion I. State of the art in laser surface texturing. J Tribol, 2005, 127(1): 248–253

    Google Scholar 

  138. Etsion I. Improving tribological performance of mechanical components by laser surface texturing. Tribol Lett, 2004, 17(4): 733–737

    Google Scholar 

  139. Yamakiri H, Sasaki S, Kurita T, et al. Effects of laser surface texturing on friction behavior of silicon nitride under lubrication with water. Tribol Int, 2011, 44(5): 579–584

    Google Scholar 

  140. Garrido A H, González R, Cadenas M, et al. Tribological behavior of laser-textured nicrbsi coatings. Wear, 2011, 271(5–6): 925–933

    Google Scholar 

  141. Vilhena L M, Podgornik B, Vižintin J, et al. Influence of texturing parameters and contact conditions on tribological behaviour of laser textured surfaces. Meccanica, 2010, 46(3): 567–575

    Google Scholar 

  142. Yuan S, Huang W, Wang X. Orientation effects of micro-grooves on sliding surfaces. Tribol Int, 2011, 44(9): 1047–1054

    Google Scholar 

  143. Myshkin N K, Grigoriev A Y. Morphology: Texture, shape, and color of friction surfaces and wear debris in tribodiagnostics problems. J Frict Wear, 2008, 29(3): 192–199

    Google Scholar 

  144. Erdemir A. Review of engineered tribological interfaces for improved boundary lubrication. Tribol Int, 2005, 38(3): 249–256

    Google Scholar 

  145. Wang X L, Kato K, Adachi K, et al. Loads carrying capacity map for the surface texture design of sic thrust bearing sliding in water. Tribol Int, 2003, 36(3): 189–197

    Google Scholar 

  146. Ryk G, Kligerman Y, Etsion I. Experimental investigation of laser surface texturing for reciprocating automotive components. Tribol Trans, 2002, 45(4): 444–449

    Google Scholar 

  147. Ronen A, Etsion I, Kligerman Y. Friction-reducing surface texturing in reciprocating automotive components. Tribol Trans, 2001, 44(3): 359–366

    Google Scholar 

  148. Pettersson U. Influence of surface texture on boundary lubricated sliding contacts. Tribol Int, 2003, 36(11): 857–864

    Google Scholar 

  149. Yu X Q, He S, Cai R L. Frictional characteristics of mechanical seals with a laser-textured seal face. J Mater Process Tech, 2002, 129(1–3): 463–466

    Google Scholar 

  150. Pettersson U, Jacobson S. Textured surfaces for improved lubrication at high pressure and low sliding speed of roller/piston in hydraulic motors. Tribol Int, 2007, 40(2): 355–359

    Google Scholar 

  151. Raeymaekers B, Etsion I, Talke F E. Enhancing tribological performance of the magnetic tape/guide interface by laser surface texturing. Tribol Lett, 2007, 27(1): 89–95

    Google Scholar 

  152. Borghi A, Gualtieri E, Marchetto D, et al. Tribological effects of surface texturing on nitriding steel for high-performance engine applications. Wear, 2008, 265(7-8): 1046–1051

    Google Scholar 

  153. Kango S, Singh D, Sharma R K. Numerical investigation on the influence of surface texture on the performance of hydrodynamic journal bearing. Meccanica, 2011, 47(2): 469–482

    Google Scholar 

  154. Mang T, Dresel W. Lubricants and Lubrication. 2nd ed. Darmstadt: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

    Google Scholar 

  155. Nosonovsky M. Self-organization at the frictional interface for green tribology. Philos Transact A-Math Phys Eng Sci, 2010, 368(1929): 4755–4774

    MathSciNet  Google Scholar 

  156. Lee S M. International Encyclopedia of Composites. New York: VCH Publishers, 1990

    Google Scholar 

  157. Rohatgi P J B P K, Yust C S. Tribology of Composite Materials. ASM International, Materials Park, 1990: 101

    Google Scholar 

  158. Sung N P S N H. Effect of fiber orientation on friction and wear of fiber reinforced polymeric composites. Wear, 1979, 53(1): 129–141

    Google Scholar 

  159. Khedkar I N J, Meletis E I. Sliding wear behavior of PTFE composites. Wear, 2002, 252(5–6): 361–369

    Google Scholar 

  160. Blanchet F E K T A. Sliding wear mechanism of polytetrafluoroethylene (PTFE) and PTFE composites. Wear, 1992, 153(1): 229–243

    Google Scholar 

  161. Li F, Yan F Y, Yu L G, et al. The tribological behaviors of coppercoated graphite filled PTFE composites. Wear, 2000, 237(1): 33–38

    Google Scholar 

  162. Wang Q H, Xue Q J, Shen W C. The friction and wear properties of nanometre SiO2 filled polyetheretherketone. Tribol Int, 1997, 30(3): 193–197

    Google Scholar 

  163. Wang Q H, Xue Q J, Shen W C, et al. The friction and wear properties of nanometer ZrO2-filled polyetheretherketone. J Appl Polym Sci, 1998, 69(1):135–141

    Google Scholar 

  164. He J, Wang L, Li W, et al. Experimental observations on the mechanical properties of nanoscale ceramic/teflon multilayers. Mate Chem Phys, 1998, 54(1–3): 334–337

    Google Scholar 

  165. Vande Voort S B J. The growth and bonding of transfer film and the role of CuS and PTFE in the tribological behavior of peek. Wear, 1995, 181-183: 212–221

    Google Scholar 

  166. Ben T, Chen C H, Cao H, et al. LB film structure of nanometer-scale PEEKK macrocyclic oligomers. Macromol Rapid Commun, 2002, 23: 196–199

    Google Scholar 

  167. Mondelin A, Furet B, Rech J. Characterisation of friction properties between a laminated carbon fibres reinforced polymer and a monocrystalline diamond under dry or lubricated conditions. Tribol Int, 2010, 43(9): 1665–1673

    Google Scholar 

  168. Dhieb H, Buijnsters J G, Celis J P, et al. Degradation of carbon fiber reinforced epoxy composites under sliding in ambient air. Sustain Constr Design, 2011: 53–58

    Google Scholar 

  169. Theiler G, Hubner W, Gradt T, et al. Friction and wear of carbon fibre filled polymer composites at room and low temperatures. Matwiss. u. Werkstofftechnik, 2004, 35(10-11): 683–689

    Google Scholar 

  170. Shi Y. The effect of surface modification on the friction and wear behavior of carbon nanofiber-filled PTFE composites. Wear, 2008, 264(11-12): 934–939

    Google Scholar 

  171. Jia J, Chen J, Zhou H, et al. Comparative investigation on the wear and transfer behaviors of carbon fiber reinforced polymer composites under dry sliding and water lubrication. Compos Sci Technol, 2005, 65(7–8): 1139–1147

    Google Scholar 

  172. Sun L, Yang Z, Li X. Tensile and tribological properties of ptfe and nanoparticles modified epoxy-based polyester fabric composites. Mater Sci Eng A, 2008, 497(1–2): 487–494

    Google Scholar 

  173. Bijwe J, Rattan R, Fahim M. Abrasive wear performance of carbon fabric reinforced polyetherimide composites: Influence of content and orientation of fabric. Tribol Int, 2007, 40(5): 844–854

    Google Scholar 

  174. Wan Y, Chen G, Raman S, et al. Friction and wear behavior of three-dimensional braided carbon fiber/epoxy composites under dry sliding conditions. Wear, 2006, 260(9–10): 933–941

    Google Scholar 

  175. Su F, Zhang Z, Wang K, et al. Friction and wear properties of carbon fabric composites filled with nano-Al2O3 and nano-Si3N4. Composites Part A, 2006, 37(9): 1351–1357

    Google Scholar 

  176. Su F, Zhang Z, Guo F, et al. Effects of solid lubricants on friction and wear properties of nomex fabric composites. Mater Sci Eng A, 2006, 424(1–2): 333–339

    Google Scholar 

  177. Su F, Zhang Z, Guo F, et al. Tribological properties of the composites made of pure and plasma treated-nomex fabrics. Wear, 2006, 261(3–4): 293–300

    Google Scholar 

  178. Zhang Z, Su F, Wang K, et al. Study on the friction and wear properties of carbon fabric composites reinforced with micro- and nanoparticles. Mater Sci Eng A, 2005, 404(1–2): 251–258

    Google Scholar 

  179. Zhang X, Pei X, Wang Q. Friction and wear studies of polyimide composites filled with short carbon fibers and graphite and micro SiO2. Mater Design, 2009, 30(10): 4414–4420

    Google Scholar 

  180. Wang Q, Zhang X, Pei X. Study on the friction and wear behavior of basalt fabric composites filled with graphite and nano-SiO2. Mater Design, 2010, 31(3): 1403–1409

    Google Scholar 

  181. Sang K. A study of the SiC-L composite ceramics for self-lubrication. Wear, 2002, 253(11–12): 1188–1193

    Google Scholar 

  182. Carrapichano J M, Gomes J R, Silva R F. Tribological behaviour of Si3N4-BN ceramic materials for dry sliding applications. Wear, 2002, 253: 1070–1076

    Google Scholar 

  183. Bewilogua K, Bräuer G, Dietz A, et al. Surface technology for automotive engineering. CIRP Annals-Manuf Technol, 2009, 58(2): 608–627

    Google Scholar 

  184. Donnet C, Erdemirb A. Historical developments and new trends in tribological and solid lubricant coatings. Surf Coat Technol, 2004, 180–181: 76–84

    Google Scholar 

  185. Wolf Dieter M. Titanium aluminum nitride films: A new alternative to tin coatings. J Vac Sci Technol, 1986, A4(6): 2717–2725

    Google Scholar 

  186. PalDey S C D S. Single layer and multilayer wear resistant coatings of (Ti, Al)N: A review. Mater Sci Eng A, 2003, 342: 58–79

    Google Scholar 

  187. Veprek S, Reiprich S, Shizhi L. Superhard nanocrystalline composite materials: The TiN/Si3N4 system. Appl Phys Lett, 1995, 66(20): 2640

    Google Scholar 

  188. Yuan Z G, Yang J F, Wang X, et al. Characterization and properties of quaternary Mo-Si-C-N coatings synthesized by magnetron sputtering technique. Surf Coat Technol, 2011, 205(10): 3307–3312

    Google Scholar 

  189. Polcar T, Cavaleiro A. High temperature properties of CrAlN, CrAlSiN and AlCrSiN coatings-structure and oxidation. Mater Chem Phys, 2011, 129(1–2): 195–201

    Google Scholar 

  190. Polcar T, Cavaleiro A. Structure and tribological properties of alcrtin coatings at elevated temperature. Surf Coat Technol, 2011, 205: S107–S110

    Google Scholar 

  191. Hong Y S, Kwon S H, Wang T, et al. Effects of Cr interlayer on mechanical and tribological properties of Cr-Al-Si-N nanocomposite coating. T Nonferr Metal Soc, 2011, 21: s62–s67

    Google Scholar 

  192. Lin J, Moore J J, Moerbe W C, et al. Structure and properties of selected (Cr-Al-N, TiC-C, Cr-B-N) nanostructured tribological coatings. Int J Refractory Metals Hard Mater, 2010, 28: 2–14

    Google Scholar 

  193. Lin C, Duh J. Corrosion behavior of (Ti-Al-Cr-Si-V)xNy coatings on mild steels derived from RF Magnetron sputtering. Surf Coat Technol, 2008, 203(5-7): 558–561

    Google Scholar 

  194. Ma S L, Ma D Y, Guo Y, et al. Synthesis and characterization of super hard, self-lubricating Ti-Si-C-N nanocomposite coatings. Acta Mater, 2007, 55(18): 6350–6355

    Google Scholar 

  195. Capek J, Hreben S, Zeman P, et al. Effect of the gas mixture composition on high-temperature behavior of magnetron sputtered Si-BZC-N coatings. Surf Coat Technol, 2008, 203(5–7): 466–469

    Google Scholar 

  196. Paternoster C, Fabrizi A, Cecchini R, et al. Thermal evolution and mechanical properties of hard Ti-Cr-B-N and Ti-Al-Si-B-N coatings. Surf Coat Technol, 2008, 203(5–7): 736–740

    Google Scholar 

  197. Krzanowski J E. Fabrication and tribological properties of composite coatings produced by lithographic and microbeading methods. Surf Coat Technol, 2009, 204(6–7): 955–961

    Google Scholar 

  198. Panjan M, Sturm S, Panjan P, et al. The influence of rotation during sputtering on the stoichiometry of TiAlN/CrNx multilayer coating. Surf Coat Technol, 2008, 203(5-7): 554–557

    Google Scholar 

  199. Luo Q S, Wang S C, Zhou Z Z, et al. Structure characterization and tribological study of magnetron sputtered nanocomposite nc-TiAlV (N,C)/a-C coatings. J Mater Chem, 2011, 21: 9746–9756

    Google Scholar 

  200. Zhu M, Li M S, Xu J J, et al. Short-term oxidation and hot corrosion resistance of a gradient CrN/Cr1−x AlxN coating. Mater Corros, 2010, 61(11): 939–946

    Google Scholar 

  201. Savisalo T, Lewis D, Hovsepian P. Microstructure and properties of novel wear and corrosion resistant CrON/NbON nano-scale multilayer coatings. Surf Coat Technol, 2006, 200(8): 2731–2737

    Google Scholar 

  202. Hovsepian P E, Munz W D. Recent progress in large-scale production of nanoscale multilayer/superlattice hard coatings. Vacuum, 2003, 69: 27–36

    Google Scholar 

  203. Erdemir A, Donnet C. Tribology of diamond-like carbon films: Recent progress and future prospects. J Phys D-Appl Phys, 2006, 39(18): R311–R327

    Google Scholar 

  204. Kalin M, Velkavrh I, Vižintin J, et al. Review of boundary lubrication mechanisms of DLC coatings used in mechanical applications. Meccanica, 2008, 43(6): 623–637

    MATH  Google Scholar 

  205. Hainsworth S V, Uhure N J. Diamond like carbon coatings for tribology: Production techniques, characterisation methods and applications. Int Mater Rev, 2007, 52(3): 153–174

    Google Scholar 

  206. Kano M, Tanimoto I. Wear mechanism of high wear-resistant materials or automotive valve trains. Wear, 1991, 151(2): 229–243

    Google Scholar 

  207. Dai M J, Zhou K S, Yuan Z H, et al. The cutting performance of diamond and DLC-coated cutting tools. Diamond Relat Mater, 2000, 9(9–10): 1753–1757

    Google Scholar 

  208. Jiang J. Structure and mechanics of W-DLC coated spur gears. Surf Coat Technol, 2003, 176(1): 50–56

    Google Scholar 

  209. Tung S. Tribological characteristics and surface interaction between piston ring coatings and a blend of energy-conserving oils and ethanol fuels. Wear, 2003, 255(7–12): 1276–1285

    Google Scholar 

  210. Hershberger J. Evaluation of DLC coatings for spark-ignited, directinjected fuel systems. Surf Coat Technol, 2004, 179(2–3): 237–244

    Google Scholar 

  211. Kalin M, Vizintin J. The tribological performance of dlc-coated gears lubricated with biodegradable oil in various pinion/gear material combinations. Wear, 2005, 259(7–12): 1270–1280

    Google Scholar 

  212. Etsion I, Halperin G, Becker E. The effect of various surface treatments on piston pin scuffing resistance. Wear, 2006, 261(7–8): 785–791

    Google Scholar 

  213. Kano M. DLC coating technology applied to sliding parts of automotive engine. New Diamond Frontier Carbon Technol, 2006, 16: 201–210

    Google Scholar 

  214. Vanhulsel A, Velasco F, Jacobs R, et al. DLC solid lubricant coatings on ball bearings for space applications. Tribol Int, 2007, 40(7): 1186–1194

    Google Scholar 

  215. Lawes S D A, Hainsworth S V, Fitzpatrick M E. Impact wear testing of diamond-like carbon films for engine valve-tappet surfaces. Wear, 2010, 268(11–12): 1303–1308

    Google Scholar 

  216. Igor V, Mitjan K, Jozef V. The performance and mechanisms of DLC coated surfaces in contact with steel in boundary-lubrication conditions-A review. J Mech Eng, 2008, 54: 189–206

    Google Scholar 

  217. Ronkainen H, Varjus S, Koskinen J, et al. Differentiating the tribological performance of hydrogenated and hydrogen-free DLC coatings. Wear, 2001, 249(3–4): 260–266

    Google Scholar 

  218. Dimigen H, Hübsch H, Memming R. Tribological and electrical properties of metal-containing hydrogenated carbon films. Appl Phys Lett, 1987, 50(16): 1056–1058

    Google Scholar 

  219. Chen J S, Lau S P, Sun Z, et al. Metal-containing amorphous carbon films for hydrophobic application. Thin Solid Films, 2001, 398–399: 110–115

    Google Scholar 

  220. Rubio-Roy M, Corbella C, Andújar J L, et al. Tribological properties of fluorinated amorphous carbon thin films New Tribological Ways 2011, ISBN: 978-953-307-206-7, InTech, Available from: http://www.intechopen.com/articles/show/title/tribological-properties-of-fluorinated-amorphous-carbon-thin-films(47-70)

    Google Scholar 

  221. Vercammen K. Tribological behaviour of DLC coatings in combination with biodegradable lubricants. Tribol Int, 2004, 37(11–12): 983–989

    Google Scholar 

  222. Yang S H, Kong H, Lee K R, et al. Effect of environment on the tribological behavior of Si-incorporated diamond-like carbon films. Wear, 2002, 252(1–2): 70–79

    Google Scholar 

  223. Choi J, Nakao S, Miyagawa S, et al. The effects of Si incorporation on the thermal and tribological properties of DLC films deposited by PBII&D with bipolar pulses. Surf Coat Technol, 2007, 201(19–20): 8357–8361

    Google Scholar 

  224. Zou Y S, Wu Y F, Huang R F, et al. Mechanical properties and thermal stability of nitrogen incorporated diamond-like carbon films. Vacuum, 2009, 83(11): 1406–1410

    Google Scholar 

  225. Voevodin A A, O’Neill J P, Zabinski J S. Tribological performance and tribochemistry of nanocrystalline WC/amorphous diamond-like carbon composites. Thin Solid Films, 1999, 342(1–2): 194–200

    Google Scholar 

  226. Yu X, Hua M, Wang C. Influence of Ag content and nanograin size on microstructure, mechanical and sliding tribological behaviors of Ag-DLC films. J Nanosci Nanotechnol, 2009, 9: 6366–6371

    Google Scholar 

  227. Yu X, Wang C, Hua M, et al. Influence of Cr contents and nanograin sizes on microstructure, mechanical and sliding tribological behaviors of hard Cr-diamond-like carbon films. J Nanosci Nanotechnol, 2010, 10: 5379–5382

    Google Scholar 

  228. Cselle T. Application of coatings for tooling quo vadis 2005? Vakuum in Forschung Und Praxis VIP, 2005, 17(S1): 33–39

    Google Scholar 

  229. Veprek S, Veprekheijman M, Karvankova P, et al. Different approaches to superhard coatings and nanocomposites. Thin Solid Films, 2005, 476(1): 1–29

    Google Scholar 

  230. Veprek S, Veprekheijman M. Industrial applications of superhard nanocomposite coatings. Surf Coat Technol, 2008, 202(21): 5063–5073

    Google Scholar 

  231. Voevodin A A, Zabinski J S. Supertough wear-resistant coatings with “chameleon” surface adaptation. Thin Solid Films, 2000, 370: 223–231

    Google Scholar 

  232. Lin D Y, Zhao Y T. Preparation of novel hydroxyapatite/Yttria-stabilized-Zirconia gradient coatings by magnetron sputtering. Adv Eng Mater, 2011, 13(1-2): B18–B24

    MathSciNet  Google Scholar 

  233. Zhang J, Lv H, Cui G, et al. Effects of bias voltage on the microstructure and mechanical properties of (Ti, Al, Cr)N hard films with N-gradient distributions. Thin Solid Films, 2011, 519(15): 4818–4823

    Google Scholar 

  234. Louro C, Moura C W, Carvalho N, et al. Thermal stability in oxidative and protective environments of a-C:H cap layer on a functional gradient coating. Diamond Relat Mater, 2011, 20(2): 57–63

    Google Scholar 

  235. Wang L, Wan S, Wang S C, et al. Gradient DLC-based nanocomposite coatings as a solution to improve tribological performance of aluminum alloy. Tribol Lett, 2010, 38(2): 155–160

    Google Scholar 

  236. Zabinski S, Donley M S, Dyhouse V J, et al. Chemical and tribological characterization of PbO-MnO2 films grown by pulsed laser deposition. Thin Solid Films, 1992, 214: 156–163

    Google Scholar 

  237. Zabinski J S, Donley M S, McDevitt N T. Mechanistic study of the synergism between Sb2O3 and MoS2 lubricant systems using Raman spectroscopy. Wear, 1993, 165(1): 103–108

    Google Scholar 

  238. Wang Y, Wang L, Wang S C, et al. Nanocomposite microstructure and environment self-adapted tribological properties of highly hard graphite-like film. Tribol Lett, 2010, 40(3): 301–310

    Google Scholar 

  239. Donnet C. Historical developments and new trends in tribological and solid lubricant coatings. Surf Coat Technol, 2004, 180–181: 76–84

    Google Scholar 

  240. Carre D. The use of solid ceramic and ceramic hard-coated components to prolong the performance of perfluoropolyalkylether lubricants. Surf Coat Technol, 1990, 43–44: 609–617

    Google Scholar 

  241. Xia Y, Zhou F, Sasaki S, et al. Remarkable friction stabilization of AISI 52100 steel by plasma nitriding under lubrication of alkyl naphthalene. Wear, 2010, 268(7–8): 917–923

    Google Scholar 

  242. Kano M. Super low friction of dlc applied to engine cam follower lubricated with ester-containing oil. Tribol Int, 2006, 39(12): 1682–1685

    Google Scholar 

  243. Leschziner M A, Choi H, ChoiPhil K S. Flow-control approaches to drag reduction in aerodynamics: Progress and prospects. Phil Trans R Soc A, 2011, 369: 1349–1351

    Google Scholar 

  244. Mavros P, Ricard A, Xuereb C, et al. A study of the effect of dragreducing surfactants on flow patterns in stirred vessels. Chem Eng Res Des, 2011, 89(1): 94–106

    Google Scholar 

  245. Dean B, Bhushan B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: A review. Phil Trans R Soc A, 2010, 368: 4775–4806

    Google Scholar 

  246. Voronov R S, Papavassiliou D V, Lee L L. Boundary slip and wetting properties of interfaces: Correlation of the contact angle with the slip length. J Chem Phys, 2007, 124(20): 204701–10

    Google Scholar 

  247. Sbragaglia M, Prosperetti A. A note on the effective slip properties for microchannel flows with ultrahydrophobic surfaces. Phys Fluids, 2007, 19(4): 043603–8

    Google Scholar 

  248. Sahraoui M, Kaviany M. Slip and no-slip temperature boundary conditions at interface of porous, plain media: Conduction. Int J Heat Mass Transfer, 1993, 36: 1019–1033

    Google Scholar 

  249. Herr A E, Molho J I, Santiago J G, et al. Electroosmotic capillary flow with nonuniform Zeta potential. Anal Chem, 2000, 72(5): 1053–1057

    Google Scholar 

  250. Pismen L M, Rubinstein B Y. Kinetic slip condition, van der waals forces, and dynamic contact angle. Langmuir, 2001, 17: 5265–5270

    Google Scholar 

  251. Sparreboom W, van den Berg A, Eijkel J C T. Principles and applications of nanofluidic transport. Nature Nanotech, 2009, 4: 713–720

    Google Scholar 

  252. Chakraborty S. Microfluidics and Microfabrication. Berlin: Springer Science+Business Media, LLC, 2010

    Google Scholar 

  253. Wu W C, Wang X L, Wang D A, et al. Alumina nanowire forests via unconventional anodization and super-repellency plus low adhesion to diverse liquids. Chem Comm, 2009, 9: 1043–1045

    Google Scholar 

  254. Forsberg P, Nikolajeff F, Karlsson M. Cassie-Wenzel and Wenzel-Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure. Soft Matter, 2011, 7: 104–109

    Google Scholar 

  255. Ou J, Perot J B, Rothstein J P. Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys Fluids, 2004, 16: 4635–4643

    Google Scholar 

  256. Choi C H, Kim C J. Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys Rev Lett, 2006, 96: 066001–4

    Google Scholar 

  257. Zhou M, Li J, Wu C X, et al. Fluid drag reduction on superhydrophobic surfaces coated with carbon nanotube forests (CNTs). Soft Matter, 2011, 7: 4391–4396

    Google Scholar 

  258. Truesdell R, Mammoli A, Vorobieff P, et al. Drag reduction on a patterned superhydrophobic surface. Phys Rev Lett, 2006, 97: 044504–4

    Google Scholar 

  259. Watanabe K, Udagawa Y, Udagawa H. Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall. J Fluid Mech, 1999, 381, 225–238

    MATH  Google Scholar 

  260. Daniello R J, Waterhouse N E, Rothstein J P. Drag reduction in turbulent flows over superhydrophobic surface. Phys Fluids, 2009, 21: 085103–9

    Google Scholar 

  261. Chen J H, Tsai C C, Kehr Y Z, et al. An experimental study of drag reduction in a pipe with superhydrophobic coating at moderate reynolds numbers. EPJ Web of Conferences, 2010, 6: 19005

    Google Scholar 

  262. Bechert D W, Bruse M, Hage W, et al. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J Fluid Mech, 1997, 338: 59–87

    Google Scholar 

  263. Walsh M J, Anders J B Jr. Riblet/LEBU research at NASA Langley. Appl Sci Res, 1989, 46: 255–262

    Google Scholar 

  264. Bechert D W, Bruse M, Hage W, et al. Biological surfaces and their technological application-Laboratory and flight experiments on drag reduction and separation control. InAIAA 28th Fluid Dynamics Conference. Snowmass Village, 1997, paper No. AIAA-1997-1960

    Google Scholar 

  265. Weiss M H. Implementation of drag reduction techniques in natural gas pipelines. In 10th European Drag Reduction Working Meeting, Berlin, Germany, 1997. 19–21

    Google Scholar 

  266. Matthews J N A. Low-drag suit propels swimmers. Phys Today, 2008, 61(8): 32

    Google Scholar 

  267. Kramer M O. Boundary layer stabilisation by distributed damping. J Aero Sci, 1957, 24: 459–460

    Google Scholar 

  268. Kramer M O. Boundary layer stabilisation by distributed damping. J Am Soc NavEngr, 1960, 72: 25–33

    Google Scholar 

  269. Benjamin T B. Fluid flow with flexible boundaries. In Proc. 11th Int. Cong. on Applicationof Mathematics. Gortler H, ed. Berlin: Springer, 1964: 109–128

    Google Scholar 

  270. Semenov B N. On conditions of modelling and choice of viscoelastic coatings for drag reduction. In: Recent Developments in turbulence management. Choi K S, ed. Dordrecht: Kluwer. 1991, 241-262

  271. Choi K S, Yang X, Clayton B R, et al. Turbulent drag reduction using compliant surfaces. Proc R Soc Lond A, 1997, 453: 2229–2240

    MATH  Google Scholar 

  272. Kulik V M, Poguda I S, Semenov B N. Experimental investigation of one-layer viscoelastic coatings action on turbulent friction and wall pressure pulsations. In: Recent Developments in Turbulence Management. Choi K S, ed. Dordrecht: Kluwer, 1991. 263–289

    Google Scholar 

  273. Carpenter P W. Optimization of multiple-panel compliant walls for delay of laminar-turbulent transition. AIAA J, 1993, 31: 1187–1188

    Google Scholar 

  274. Gad-el-Hak M. Compliant coatings for drag reduction. Prog Aerosp Sci, 2002, 38(1): 77–99

    Google Scholar 

  275. Semenov B N, Amirov A I, Kulik V M, et al. Experimental studies of compliant coatings for reduction of turbulent friction. Thermophys Aeromech, 2007, 14(1): 133–142

    Google Scholar 

  276. Lee I W, Chun H H. Design parameter optimization of compliant coating for drag reduction. International Conference on Ship Drag Reduction (SMOOTH-SHIPS), Istanbul, Turkey, 20–21 May, 2010

    Google Scholar 

  277. McCormick M E, Bhattacharya R. Drag reduction of a submersible hull by electrolysis. Nav Eng J, 1973, 85(2): 11–16

    Google Scholar 

  278. Pang M J, Wei J J, Yu B. Numerical studies on effects of bubbles regular array on the liquid-phase turbulence. Can J Chem Eng, 2010, 88(6): 945–958

    Google Scholar 

  279. Madavan N K, Deutsch S, Merkle C L. Reduction of turbulent skin friction by micro-bubbles. Phys Fluids, 1984, 27: 356–363

    Google Scholar 

  280. Kato H, Iwashina T, Miyanaga M, et al. Effect of microbubbles on the structure of turbulence in a turbulent boundary layer. J Marine Sci Technol, 1999, 4: 155–162

    Google Scholar 

  281. Tsai J F, Chen C C. Experimental study on the micro-bubble drag reduction effect in water tunnel and towing tank. The 13th Asia-Pacific Workshop on Marine Hydrodynamics, Shanghai, China, 2006

    Google Scholar 

  282. Vakarelski I U, Marston J O, Chan D Y C, et al. Drag reduction by Leidenfrost vapor layers. Phys Rev Lett, 2011, 106: 214501–4

    Google Scholar 

  283. Latorre R. Ship hull drag reduction using bottom air injection. Ocean Eng, 1997, 24: 161–175

    Google Scholar 

  284. Sanders W C, Winkel E S, Dowling D R, et al. Bubble friction drag reduction in a high-Reynolds-number flat-plate turbulent boundary layer. J Fluid Mech, 2006, 552: 353–380

    MATH  Google Scholar 

  285. Elbing B R, Winkel E S, Lay K A, et al. Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction. J Fluid Mech, 2008, 612: 201–236

    MATH  Google Scholar 

  286. Ceccio S L. Friction drag reduction of external flows with bubble and gas injection. Annu Rev Fluid Mech, 2010, 42: 183–203

    Google Scholar 

  287. Toms B A. Some observation on the flow of linear polymer solutions through straight tubes at large Reynolds number. In: Proceedings of the 1st International Congress on Rheology, North-Holland Amsterdam, 1948, Vol. 2. 135–141

    Google Scholar 

  288. Lumley J L. Drag reduction in turbulent flow by polymer additives. J Polym Sci Macromol Rev, 1973, 7(1): 263–190

    Google Scholar 

  289. L’vov V S, Pomyalov A, ProcacciaI I, et al. Drag reduction by polymers in wall bounded turbulence. Phys Rev Lett, 2004, 92: 244503–4

    Google Scholar 

  290. Joseph D D. Fluid Dynamics of Viscoelastic Liquids. New York: Springer Verlag, 1990

    MATH  Google Scholar 

  291. Al-Sarkhi A, Abu-Nada E. Effect of drag reducing polymer onannular flow patterns of air and water in a small horizontal pipeline. In: Twelfth International Conference on Multiphase Production Technology, 25–27 May 2005, Barcelona, Spain

  292. Al-Wahaibi T, Smith M, Angeli P. Effect of drag-reducing polymers on horizontal oil-water flows. J Petrol Sci Eng, 2007, 57: 334–346

    Google Scholar 

  293. Al-Yaari M, Soleimani A, Abu-Sharkh B, et al. Effect of drag reducing polymers on oil-water flow in a horizontal pipe. Int J Multiphase flow, 2009, 35: 516–524

    Google Scholar 

  294. Kulicke W M, Kotter M, Gragem H. Drag Reduction Phenomenon With Special Emphasis On Homogenous Polymer Solutions: Polymer Characterization/Polymer Solutions. Berlin: Springer-Verlag, 1989

    Google Scholar 

  295. Counc N S. Submarine platform technology. In: Technology for the United States Navy and Marine Corps, 2000–2035: Becoming a 21st-Century Force. Vol. 6, Platforms. Washington, DC: Natl Acad Press, 1997. 85–114

    Google Scholar 

  296. Winkel E S, Oweis G F, Vanapalli S A, et al. Friction drag reduction at high reynolds numbers using injected polymer solutions. 26th ONR Symp. Naval Hydrodynamics, Rome

  297. Winkel E S, Oweis G F, Vanapalli S A, et al. High-Reynolds-number turbulent boundary layer friction drag reduction from wall-injected polymer solutions. J Fluid Mech, 2009, 621: 259–288

    MATH  Google Scholar 

  298. Stenzel V, Wilke Y, Hage W. Drag-reducing paints for the reduction of fuel consumption in aviation and shipping. Prog Org Chem, 2011, 70: 224–229

    Google Scholar 

  299. Sabadini E, Francisco K R, Bouteiller L. Bis-urea-based supramolecular polymer: The first self-assembled drag reducer for hydrocarbon solvents. Langmuir, 2010, 26(3): 1482–1486

    Google Scholar 

  300. Watanabe K. In: Proceedings of the International Symposium on Seawater Drag Reduction. Newport Rhode Island, July 1998

  301. Semenov B N. The combination of polymer, compliant wall, and microbubble drag reduction schemes. Adv Mech Eng, 2011, Article ID 743975, doi:10.1155/2011/743975

    Google Scholar 

  302. Liu Y H, Xiao Y Q, Luo J B. Preparation of poly (N-isopropylacrylamide) brush bonded on silicon substrate and its water-based lubricating property. Sci China Tech Sci, 2012, 55: 2656–2661

    Google Scholar 

  303. Guo Y B, Wang D G, Liu S H, et al. Shear of molecular deposition films on glass substrates determined by tribometer. Sci China Tech Sci, 2011, 54: 1005–1010

    Google Scholar 

  304. Liu Y H, Wang X K, Liu P X, et al. Modification on the tribological properties of ceramics lubricated by water using fullerenol as a lubricating additive. Sci China Techn Sci, 2012, 55: 2656–2661

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiMin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, M., Guo, R., Zhou, F. et al. Lubricating a bright future: Lubrication contribution to energy saving and low carbon emission. Sci. China Technol. Sci. 56, 2888–2913 (2013). https://doi.org/10.1007/s11431-013-5403-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5403-2

Keywords

Navigation