Skip to main content
Log in

Advancements in superlubricity

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Superlubricity is a new area in tribology, in which the slide friction coefficient is about 1/1000 to 1/100 of the general ones. Since the concept of superlubricity was proposed, it has attracted more and more attentions from researchers in fields of tribology, physics, chemistry, materials, etc. Many significant progresses have been made during the last two decades in experimental studies on superlubricity. In the present work, the recent advancements in solid superlubricity and liquid superlubricity are reviewed and the lubricating mechanisms of different superlubricity systems are discussed. Finally, the problems on the superlubricity mechanism and the development of superlubricity in the future are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirano M, Shinjo K. Atomistic locking and friction. Phys Rev B, 1990, 41(17):11837–11851

    Google Scholar 

  2. Shinjo K, Hirano M. Dynamics of friction—Superlubric state. Surf Sci, 1993, 283(1–3):473–478

    Google Scholar 

  3. Erdemir A, Martin J M. Superlubricity. New York: Elsevier, 2007

    Google Scholar 

  4. McGuiggan P M, Zhang J, Hsu S M. Comparison of friction measurements using the atomic force microscope and the surface forces apparatus: the issue of scale. Tribol Lett, 2001, 10(4):217–223

    Google Scholar 

  5. Raviv U, Frey J, Sak R, et al. Properties and interactions of physigrafted end-functionalized poly(ethylene glycol) layers. Langmuir, 2002, 18(20):7482–7495

    Google Scholar 

  6. Hirano M. Superlubricity: a state of vanishing friction. Wear, 2003, 254(10):932–940

    MathSciNet  Google Scholar 

  7. Ruths M, Alcantar N A, Israelachvili J N. Boundary friction of aromatic silane self-assembled monolayers measured with the surface forces apparatus and friction force microscopy. J Phys Chem B, 2003, 107(40):11149–11157

    Google Scholar 

  8. Butt H J, Cappella B, Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep, 2005, 59(1–6):1–152

    Google Scholar 

  9. Sasaki N, Itamura N, Tsuda D, et al. Nanomechanical studies of superlubricity. Current Nanosci, 2007, 3(1):105–115

    Google Scholar 

  10. Feiler A A, Bergstrom L, Rutland M W. Superlubricity using repulsive van der Waals forces. Langmuir, 2008, 24(6):2274–2276

    Google Scholar 

  11. Dong Y L, Vadakkepatt A, Martini A. Analytical models for atomic friction. Tribol Lett, 2011, 44(3):367–386

    Google Scholar 

  12. Falk K, Sedlmeier F, Joly L, et al. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett, 2010, 10(10):4067–4073

    Google Scholar 

  13. Hu Y Z, Ma T B, Wang H. Energy dissipation in atomic-scale friction. Friction, 2013, 1(1):24–40

    Google Scholar 

  14. Samadashvili N, Reischl B, Hynninen T, et al. Atomistic simulations of friction at an ice-ice interface. Friction, 2013, 1(3):242–251

    Google Scholar 

  15. Martin J M, Donnet C, Lemogne T, et al. Superlubricity of molybdenum-disulfide. Phys Rev B, 1993, 48(14):10583–10586

    Google Scholar 

  16. Erdemir A, Eryilmaz O L, Nilufer I B, et al. Synthesis of superlow-friction carbon films from highly hydrogenated methane plasmas. Surf Coat Technol, 2000, 133:448–454

    Google Scholar 

  17. Kato K, Umehara N, Adachi K. Friction, wear and N-2-lubrication of carbon nitride coatings: a review. Wear, 2003, 254(11):1062–1069

    Google Scholar 

  18. Dienwiebel M, Verhoeven G S, Pradeep N, et al. Superlubricity of graphite. Phys Rev Lett, 2004, 92(12):126101

    Google Scholar 

  19. Sutton D C, Limbert G. The friction of diamond-like carbon coatings in a water environment. Friction, 2013, 1(3):210–221

    Google Scholar 

  20. Raviv U, Giasson S, Kampf N, et al. Lubrication by charged polymers. Nature, 2003, 425(6954):163–165

    Google Scholar 

  21. Chen M, Kato K, Adachi K. Friction and wear of self-mated SiC and Si3N4 sliding in water. Wear, 2001, 250:246–255

    Google Scholar 

  22. Zhou F, Adachi K, Kato K. Friction and wear property of a-CNx coatings sliding against ceramic and steel balls in water. Diam Relat Mat, 2005, 14(10):1711–1720

    Google Scholar 

  23. Matta C, Joly-Pottuz L, Bouchet M I D, et al. Superlubricity and tribochemistry of polyhydric alcohols. Phys Rev B, 2008, 78(8): 085436

    Google Scholar 

  24. Ma Z Z, Zhang C H, Luo J B, et al. Superlubricity of a mixed aqueous solution. Chin Phys Lett, 2011, 28(5):056201

    Google Scholar 

  25. Arad S, Rapoport L, Moshkovich A, et al. Superior biolubricant from a species of red microalga. Langmuir, 2006, 22(17):7313–7317

    Google Scholar 

  26. Li J J, Liu Y H, Luo J B, et al. Excellent lubricating behavior of Brasenia Schreberi Mucilage. Langmuir, 2012, 28(20):7797–7802

    Google Scholar 

  27. Erdemir A, Nilufer I B, Eryilmaz O L, et al. Friction and wear performance of diamond-like carbon films grown in various source gas plasmas. Surf Coat Technol, 1999, 120:589–593

    Google Scholar 

  28. Hirano M, Shinjo K, Kaneko R, et al. Observation of superlubricity by scanning tunneling microscopy. Phys Rev Lett, 1997, 78(8):1448–1451

    Google Scholar 

  29. Socoliuc A, Bennewitz R, Gnecco E, et al. Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys Rev Lett, 2004, 92(13):134301–134304

    Google Scholar 

  30. Sun C Q, Sun Y, Ni Y G, et al. Coulomb repulsion at the nanometer-sized contact: a force driving superhydrophobicity, superfluidity, superlubricity, and supersolidity. J Phys Chem C, 2009, 113(46):20009–2001

    Google Scholar 

  31. King F K. Datapoint thin-film media. IEEE Trans Magn, 1981, 17(4):1376–1379

    Google Scholar 

  32. Khan M R, Heiman N, Fisher R D, et al. Carbon overcoat and the process dependence on its microstructure and wear characteristics. IEEE Trans Magn, 1988, 24(6):2647–2649

    Google Scholar 

  33. Jun Q, Luo J B, Wen S Z, et al. Mechanical and tribological properties of non-hydrogenated DLC films synthesized by IBAD. Surf Coat Technol, 2000, 128:324–328

    Google Scholar 

  34. Yang M C, Luo J B, Z Wen S. Failure characterization at head/write interface of hard disc drive. Sci China, 2001, 44:407–411

    Google Scholar 

  35. Erdemir A, Eryilmaz O L, Fenske G. Synthesis of diamondlike carbon films with superlow friction and wear properties. J Vac Sci Technol A, 2000, 18(4):1987–1992

    Google Scholar 

  36. Erdemir A, Donnet C. Tribology of diamond-like carbon films: recent progress and future prospects. J Phys D-Appl Phys, 2006, 39(18):R311–R327

    Google Scholar 

  37. Erdemir A. Genesis of superlow friction and wear in diamondlike carbon films. Tribol Int, 2004, 37(11–12):1005–1012

    Google Scholar 

  38. Erdemir A. The role of hydrogen in tribological properties of diamond-like carbon films. Surf Coat Technol, 2001, 146:292–297

    Google Scholar 

  39. Fontaine J, Donnet C, Grill A, et al. Tribochemistry between hydrogen and diamond-like carbon films. Surf Coat Technol, 2001, 146:286–291

    Google Scholar 

  40. Qi Y, Konca E, Alpas A T. Atmospheric effects on the adhesion and friction between non-hydrogenated diamond-like carbon (DLC) coating and aluminum—A first principles investigation. Surf Sci, 2006, 600(15):2955–2965

    Google Scholar 

  41. Heimberg J A, Wahl K J, Singer I L, et al. Superlow friction behavior of diamond-like carbon coatings: time and speed effects. Appl Phys Lett, 2001, 78(17):2449–2451

    Google Scholar 

  42. Donnet C, Fontaine J, Grill A, et al. The role of hydrogen on the friction mechanism of diamond-like carbon films. Tribol Lett, 2000, 9(3–4):137–142

    Google Scholar 

  43. Kim H I, Lince J R, Eryilmaz O L, et al. Environmental effects on the friction of hydrogenated DLC films. Tribol Lett, 2006, 21(1):53–58

    Google Scholar 

  44. Qi J, Luo J B, Wang K L, et al. Mechanical and tribological properties of diamond-like carbon films deposited by electron cyclotron resonance microwave plasma chemical vapor deposition. Tribol Lett, 2003, 14(2):105–109

    Google Scholar 

  45. Diao D F, Wang C, Xue F. Frictional behavior of nanostructured carbon films. Friction, 2013, 1(1):63–71

    Google Scholar 

  46. Freyman Christina A, Chen Y F, Chung Y W. Synthesis of carbon films with ultra-low friction in dry and humid air. Surf Coat Technol, 2006, 201(1–2):164–167

    Google Scholar 

  47. Ma T B, Hu Y Z, Wang H. Molecular dynamics simulation of shear-induced graphitization of amorphous carbon films. Carbon, 2009, 47(8):1953–1957

    Google Scholar 

  48. Zhou S G, Ma L Q, Wang L P, et al. Tribo-pair dependence of friction and wear moisture sensitivity for a-C:Si:Al carbon-based coating. J Non-Cryst Solids, 2012, 358(22):3012–3018

    Google Scholar 

  49. Hilton M R, Fleischauer P D. TEM lattice imaging of the nanostructure of early-growth sputter-deposited MoS2 solid lubricant films. J Mater Res, 1990, 5(2):406–421

    Google Scholar 

  50. Li J J, Zhang C H, Sun L, et al. Analysis of measurement inaccuracy in superlubricity tests. Tribol Trans, 2013, 56(1):141–147

    Google Scholar 

  51. Donnet C, Martin J M, LeMogne T, et al. Super-low friction of MoS2 coatings in various environments. Tribol Int, 1996, 29(2):123–128

    Google Scholar 

  52. Grossiord C, Martin J M, Le Mogne T, et al. In situ MoS2 formation and selective transfer from MoDPT films. Surf Coat Technol, 1998, 108(1–3):352–359

    Google Scholar 

  53. Grossiord C, Martin J M, Le Mogne T, et al. Friction-reducing mechanisms of molybdenum dithiocarbamate zinc dithiophosphate combination: new insights in MoS2 genesis. J Vac Sci Technol A, 1999, 17(3):884–890

    Google Scholar 

  54. Chhowalla M, Amaratunga G A J. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature, 2000, 407(6801):164–167

    Google Scholar 

  55. Mate C M, McClelland G M, Erlandsson R, et al. Atomic-scale friction of a tungsten tip on a graphite surface. Phys Rev Lett, 1987, 59(17):1942–1945

    Google Scholar 

  56. Dienwiebel M, Pradeep N, Verhoeven G S, et al. Model experiments of superlubricity of graphite. Surf Sci, 2005, 576(1–3):197–211

    Google Scholar 

  57. Liu Z, Yang J R, Grey F, et al. Observation of microscale superlubricity in graphite. Phys Rev Lett, 2012, 108(20):205503

    Google Scholar 

  58. Miura K, Tsuda D, Sasaki N. Superlubricity of C60 intercalated graphite films. J Surf Sci Nanotechnol, 2005, 3:21–23

    Google Scholar 

  59. Miura K, Tsuda D, Itamura N, et al. Superlubricity of fullerene intercalated graphite composite. Jpn J Appl Phys, 2007, 46(8A):5269–5274

    Google Scholar 

  60. Sasaki N, Itamura N, Miura K. Atomic-scale ultralow friction-simulation of superlubricity of C60 molecular bearing. J Phys Confer Series, 2007, 89:012001

    Google Scholar 

  61. Liu A Y, Cohen M L. Structural-properties and electronic-structure of low-compressibility materials: β-Si3N4 and hypothetical β-C3N4. Phys Rev B, 1990, 41(15):10727–10734

    Google Scholar 

  62. Khurshudov A, Kato K, Sawada D. Tribological and mechanical properties of carbon nitride thin coating prepared by ion-beamassisted deposition. Tribol Lett, 1996, 2(1):13–21

    Google Scholar 

  63. Wang D F, Kato K. Coating hardness effect on the critical number of friction cycles for wear particle generation in carbon nitride coatings. Diam Relat Mat, 2002, 11(11):1817–1830

    Google Scholar 

  64. Sanchez-Lopez J C, Belin M, Donnet C, et al. Friction mechanisms of amorphous carbon nitride films under variable environments: a triboscopic study. Surf Coat Technol, 2002, 160(2–3):138–144

    Google Scholar 

  65. Luo J B, Lu X C, Wen S Z. Developments and unsolved problems in nano-lubrication. Prog Nat Sci, 2001, 11(3):173–183

    Google Scholar 

  66. Zhang S W. Green tribology: fundamentals and future development. Friction, 2013, 1(2):186–194

    Google Scholar 

  67. Jin Z M, Dowson D. Bio-friction. Friction, 2013, 1(2):100–113

    Google Scholar 

  68. Raviv U, Laurat P, Klein J. Fluidity of water confined to subnanometre films. Nature, 2001, 413(6851):51–54

    Google Scholar 

  69. Raviv U, Klein J. Fluidity of bound hydration layers. Science, 2002, 297(5586):1540–1543

    Google Scholar 

  70. Tisza L. On the thermal supraconductibility of liquid helium II and the Bose-Einstein statistics. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, 1938, 207:1035–1037

    Google Scholar 

  71. Tomizawa H, Fischer T E. Friction and wear of silicon-nitride and silicon-carbide in water—Hydrodynamic lubrication at low sliding speed obtained by tribochemical wear. ASLE Trans, 1987, 30(1):41–46

    Google Scholar 

  72. Zhou F, Adachi K, Kato K. Sliding friction and wear property of a-C and a-CNx coatings against SiC balls in water. Thin Solid Films, 2006, 514(1–2):231–239

    Google Scholar 

  73. Rani D A, Yoshizawa Y, Hyuga H, et al. Tribological behavior of ceramic materials (Si3N4, SiC and Al2O3) in aqueous medium. J Eur Ceram Soc, 2004, 24(10–11):3279–3284

    Google Scholar 

  74. Xu J G, Kato K. Formation of tribochemical layer of ceramics sliding in water and its role for low friction. Wear, 2000, 245(1–2):61–75

    Google Scholar 

  75. Liu Y H, Wang X K, Liu P X, et al. Modification on the tribological properties of ceramics lubricated by water using fullerenol as a lubricating additive. Sci China Tech Sci, 2012, 55(9):2656–2661

    Google Scholar 

  76. Xu J G, Kato K, Hirayama T. The transition of wear mode during the running-in process of silicon nitride sliding in water. Wear, 1997, 205(1–2):55–63

    Google Scholar 

  77. Wong H C, Umehara N, Kato K. The effect of surface roughness on friction of ceramics sliding in water. Wear, 1998, 218(2):237–243

    Google Scholar 

  78. Wang X L, Kato K, Adachi K. The lubrication effect of micro-pits on parallel sliding faces of SiC in water. Tribol Trans, 2002, 45(3):294–301

    Google Scholar 

  79. Wang X L, Kato K, Adachi K, et al. Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water. Tribol Int, 2003, 36(3):189–197

    Google Scholar 

  80. Gates R S, Hsu S M. Tribochemistry between water and Si3N4 and SiC: induction time analysis. Tribol Lett, 2004, 17(3):399–407

    Google Scholar 

  81. Wang X L, Kato K, Adachi K, et al. The effect of laser texturing of SiC surface on the critical load for transition of water lubrication mode from hydrodynamic to mixed. Tribol Int, 2001, 34(10):703–711

    Google Scholar 

  82. Adachi K. Water lubrication properties of surface-textured ceramics. J Jpn Soc Tribologis, 2010, 55(2):95–100

    Google Scholar 

  83. Klein J, Perahia D, Warburg S. Forces between polymer-bearing surfaces undergoing shear. Nature, 1991, 352(6331):143–145

    Google Scholar 

  84. Klein J, Kamiyama Y, Yoshizawa H, et al. Lubrication forces between surfaces bearing polymer brushes. Macromolecules, 1993, 26(21):5552–5560

    Google Scholar 

  85. Klein J, Kumacheva E, Mahalu D, et al. Reduction of frictional forces between solid-surfaces bearing polymer brushes. Nature, 1994, 370(6491):634–636

    Google Scholar 

  86. Klein J. Hydration lubrication. Friction, 2013, 1(1):1–23

    Google Scholar 

  87. Klein J, Raviv U, Perkin S, et al. Fluidity of water and of hydrated ions confined between solid surfaces to molecularly thin films. J Phys-Condes Matter, 2004, 16(45):5437–5448

    Google Scholar 

  88. Kenausis G L, Voros J, Elbert D L, et al. Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: Attachment mechanism and effects of polymer architecture on resistance to protein adsorption. J Phys Chem B, 2000, 104(14):3298–3309

    Google Scholar 

  89. Lee S, Muller M, Ratoi-Salagean M, et al. Boundary lubrication of oxide surfaces by poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) in aqueous media. Tribol Lett, 2003, 15(3):231–239

    Google Scholar 

  90. Muller M, Lee S, Spikes H A, et al. The influence of molecular architecture on the macroscopic lubrication properties of the brush-like co-polyelectrolyte poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) adsorbed on oxide surfaces. Tribol Lett, 2003, 15(4):395–405

    Google Scholar 

  91. Muller M T, Yan X P, Lee S W, et al. Lubrication properties of a brushlike copolymer as a function of the amount of solvent absorbed within the brush. Macromolecules, 2005, 38(13):5706–5713

    Google Scholar 

  92. Muller M T, Yan X P, Lee S W, et al. Preferential solvation and its effect on the lubrication properties of a surface-bound, brushlike copolymer. Macromolecules, 2005, 38(9):3861–3866

    Google Scholar 

  93. Li J J, Zhang C H, Luo J B. Superlubricity behavior with phosphoric acid-water network induced by rubbing. Langmuir, 2011, 27(15):9413–9417

    Google Scholar 

  94. Sjoberg S. Silica in aqueous environments. J Non-Cryst Solids, 1996, 196:51–57

    Google Scholar 

  95. Sahai N. Is silica really an anomalous oxide-Surface acidity and aqueous hydrolysis revisited. Environ Sci Technol, 2002, 36(3):445–452

    MathSciNet  Google Scholar 

  96. Li J J, Zhang C H, Sun L, et al. Tribochemistry and superlubricity induced by hydrogen ions. Langmuir, 2012, 28(45):15816–15823

    Google Scholar 

  97. Sun L, Zhang C H, Li J J, et al. Superlubricity of Si3N4 sliding against SiO2 under linear contact conditions in phosphoric acid solutions. Sci China Technol Sci, 2013, 56(7):1678–1684

    MathSciNet  Google Scholar 

  98. Li J J, Zhang C H, Ma L R, et al. Superlubricity achieved with mixtures of acids and glycerol. Langmuir, 2013, 29(1):271–275

    Google Scholar 

  99. Li J J, Zhang C H, Luo J B. Superlubricity achieved with mixtures of polyhydroxy alcohols and acids. Langmuir, 2013, 29(17):5239–5245

    MathSciNet  Google Scholar 

  100. Hua Z K, Gu P, Zhang J H. Tribological and electrochemical studies on biomimetic synovial fluids. Sci China Technol Sci, 2010, 53(11):2996–3001

    Google Scholar 

  101. Fung Y C. Biomechanics: Mechanical Properties of Living Tissues. Berlin: Springer, 1993

    Google Scholar 

  102. Luo J B, Wen S Z, Huang P. Thin film lubrication. 1. Study on the transition between EHL and thin film lubrication using a relative optical interference intensity technique. Wear, 1996, 194(1–2):107–115

    Google Scholar 

  103. Luo J B, Hu Y Z, Wen S Z. Physics and Chemistry of Micro-/Nanotribology. Maryland: ASTM International, 2008

    Google Scholar 

  104. Van Der Heid E, Zeng X, Masen M A. Skin tribology: science friction? Friction, 2013, 1(2):130–142

    Google Scholar 

  105. Liu Y H, Xiao Y Q, Luo J B. Preparation of poly (N-isopropylacrylamide) brush bonded on silicon substrate and its water-based lubricating property. Sci China Tech Sci, 2012, 55:2656–2661

    Google Scholar 

  106. Guo Y B, Wang D G, Liu S H, et al. Shear of molecular deposition films on glass substrates determined by tribometer. Sci China Tech Sci, 2011, 54:1005–1010

    Google Scholar 

  107. Zhou M, Noshir P, Zeng H B, et al. Recent advances in gecko adhesion and friction mechanisms and development of geckoinspired dry adhesive surfaces. Friction, 2013, 1(2): 114–129

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianBin Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Luo, J. Advancements in superlubricity. Sci. China Technol. Sci. 56, 2877–2887 (2013). https://doi.org/10.1007/s11431-013-5387-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5387-y

Keywords

Navigation