Skip to main content
Log in

Particle bursts in the inner radiation belt related to global lightning activity

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Particle bursts (PBs), the phenomena characterized by short-term increases of particle counting rates (CRs), were observed by space-borne radiation belt particle detectors. With the electron CR data obtained by National Oceanic and Atmospheric Administration (NOAA)-18 satellite, the occurrence of PBs in the inner belt (1⩽L⩽2 and B⩾20.5 μT) were derived for years 2006–2011. The monthly occurrence number of PBs exhibits a strong maximum in northern summer (May–August). In association with global lightning data, the seasonal occurrence of PBs is found to be consistent with the lightning activity, especially if only lightning flashes at latitudes >20° are taken into account. The positive correlation between PBs and mid-latitude lightning discharges indicates the role of lightning-induced whistler waves, and is consistent with the expected pitch-angle scattering by wave-particle interactions. The contribution of lightning is so significant that it forms a non-negligible seasonal background of PBs. If one connects PBs to seismoelectromagnetic emissions (SEME) in attempt to find the earthquake precursor, the lightning background needs to be considered with great care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zong Q G, Hao Y Q, Wang Y F. Ultra low frequency waves impact on radiation belt energetic particles. Sci China Tech Sci, 2009, 52(12): 3698–3708, doi: 10.1007/s11431-009-0390-z

    Article  Google Scholar 

  2. Zong Q G, Wang Y F, Yuan C J. Fast acceleration of killer electrons and energetic ions by inter-planetary shock stimulated ULF waves in the inner magnetosphere. Chin Sci Bull, 2011, 56(12): 1188–1201, doi: 10.1007/s11434-010-4308-8

    Article  Google Scholar 

  3. Yuan C J, Zong Q G. Dynamic variations of the outer radiation belt during magnetic storms for 1.5–6.0 MeV electrons. Sci China Tech Sci, 2011, 54(2): 431–440, doi: 10.1007/s11431-010-4269-9

    Article  Google Scholar 

  4. Lyons L R, Thorne R M, Kennel C F. Pitch-angle diffusion of radiation belt electrons within the plasmasphere. J Geophys Res, 1972, 77(19): 3455–3474, doi: 10.1029/JA077i019p03455

    Article  Google Scholar 

  5. Millan R M, Thorne R M. Review of radiation belt relativistic electron losses. J Atmos Sol Terr Phys, 2007, 69(3): 362–377, doi: 10.1016/j.jastp.2006.06.019

    Article  Google Scholar 

  6. Dungey J W. Loss of Van Allen electrons due to whistlers. Planet Space Sci, 1963, 11(6): 591–595, doi: 10.1016/0032-0633(63)90166-1

    Article  Google Scholar 

  7. Imhof W L, Voss H D, Walt M, et al. Slot region electron precipitation by lightning, VLF chorus, and plasmaspheric hiss. J Geophys Res, 1986, 91(A8): 8883–8894, doi: 10.1029/JA091iA08p08883

    Article  Google Scholar 

  8. Lauben D S, Inan U S, Bell T F. Precipitation of radiation belt electrons induced by obliquely propagating lightning-generated whistlers. J Geophys Res, 2001, 106(A12): 29745–29770, doi: 10.1029/1999-JA000155

    Article  Google Scholar 

  9. Rodger C J, Clilverd M A, McCormick R J. Significance of lightning generated whistlers to inner radiation belt electron lifetimes. J Geophys Res, 2003, 108(A12): 1462, doi: 10.1029/2003JA009906

    Article  Google Scholar 

  10. Gemelos E S, Inan U S, Walt M, et al. Seasonal dependence of energetic electron precipitation: Evidence for a global role of lightning. Geophys Res Lett, 2009, 36(21): L21107, doi: 10.1029/2009GL-040396

    Article  Google Scholar 

  11. Sgrigna V, Carota L, Conti L, et al. Correlations between earthquakes and anomalous particle bursts from SAMPEX/PET satellite observations. J Atmos Sol Terr Phys, 2005, 67(15): 1448–1462, doi: 10.1016/j.jastp.2005.07.008

    Article  Google Scholar 

  12. Parrot M. Use of satellites to detect seismo-electromagnetic effects. Adv Space Res, 1995, 15(11): 27–35, doi: 10.1016/0273-1177(95)-00072-M

    Article  Google Scholar 

  13. Nìmec F, Santolík O, Parrot M, et al. Spacecraft observations of electromagnetic perturbations connected with seismic activity. Geophys Res Lett, 2008, 35(5): L05109, doi: 10.1029/2007GL032517

    Article  Google Scholar 

  14. Aleksandrin S Y, Galper A M, Grishantzeva L A, et al. High-energy charged particle bursts in the near-Earth space as earthquake precursors. Ann Geophys, 2003, 21: 597–602, doi: 10.5194/angeo-21-597-2003

    Article  Google Scholar 

  15. Fidani C, Battiston R. Analysis of NOAA particle data and correlations to seismic activity. Nat Hazards Earth Syst Sci, 2008, 8(6): 1277–1291, doi: 10.5194/nhess-8-1277-2008

    Article  Google Scholar 

  16. Fidani C, Battiston R, Burger W J. A study of the correlation between earthquakes and NOAA satellite energetic particle bursts. Remote Sens, 2010, 2(9): 2170–2184, doi: 10.3390/rs2092170

    Article  Google Scholar 

  17. Christian H J, Blakeslee R J, Boccippio D J, et al. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J Geophys Res, 2003, 108(D1): 4005, doi: 10.1029/2002JD002347

    Article  Google Scholar 

  18. Qie X S, Zhou Y J, Yuan T. Global lightning activities and their regional differences observed from the satellite. Chin J Geophys, 2003, 46(6): 1068–1077, doi: 10.1002/cjg2.437

    Article  Google Scholar 

  19. Evans D S, Greer M S. Polar Orbiting Environmental Satellite Space Environment Monitor-2: Instrument Descriptions and Archive Data Documentation. NOAA Tech Mem 1.4, Space Environ Lab, Boulder, Colorado, 2004

    Google Scholar 

  20. Gamble R J, Rodger C J, Clilverd M A, et al. Radiation belt electron precipitation by man-made VLF transmissions. J Geophys Res, 2008, 113: A10211, doi: 10.1029/2008JA013369

    Article  Google Scholar 

  21. Cecil D J, Buechler D E, Blakeslee R J. Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos Research, 2012, ATMOS-02705, doi: 10.1016/j.atmosres.2012.06.028

    Google Scholar 

  22. Parrot M, Berthelier J J, Lebreton J P, et al. DEMETER observations of EM emissions related to thunderstorms. Space Sci Rev, 2008, 137: 511–519, doi: 10.1007/s11214-008-9347-y

    Article  Google Scholar 

  23. Sauvaud J A, Maggiolo R, Jacquey C, et al. Radiation belt electron precipitation due to VLF transmitters: Satellite observations. Geophys Res Lett, 2008, 35: L09101, doi: 10.1029/2008GL033194

    Article  Google Scholar 

  24. Clilverd M A, Rodger C J, Gamble R, et al. Ground-based transmitter signals observed from space: Ducted or nonducted? J Geophys Res, 2008, 113: A04211, doi: 10.1029/2007JA012602

    Article  Google Scholar 

  25. Varga P, Krumm F, Riguzzi F, et al. Global pattern of earthquakes and seismic energy distributions: Insights for the mechanisms of plate tectonics. Tectonophysics, 2012, 530: 80–86, doi: 10.1016/j.tecto.2011.10.014

    Article  Google Scholar 

  26. Hao Y Q, Zhang D H. Ionospheric absorption and planetary wave activity in East Asia sector. Sci China Tech Sci, 2012, 55(5): 1264–1272, doi: 0.1007/s11431-012-4799-4

    Article  Google Scholar 

  27. Xiao S G, Shi J K, Zhang D H, et al. Observational study of daytime ionospheric irregularities associated with typhoon. Sci China Tech Sci, 2012, 55(5): 1302–1304, doi: 10.1007/s11431-012-4816-7

    Article  Google Scholar 

  28. Kiszely M. Annual, monthly, weekly and diurnal distribution of Carpathian (1964–2004) and M>7 earthquakes worldwide (1900–2004) and seeking for the effect of the Moon. Acta Geod Geoph Hung, 2005, 40(3–4): 437–454, doi: 10.1556/AGeod.40.2005.3-4.14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongQiang Hao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, F., Hao, Y. & Zhang, D. Particle bursts in the inner radiation belt related to global lightning activity. Sci. China Technol. Sci. 56, 2658–2667 (2013). https://doi.org/10.1007/s11431-013-5371-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5371-6

Keywords

Navigation