Skip to main content
Log in

Estimation of thermophysical properties of solid propellants based on particle packing model

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

A method for the estimation of thermophysical properties of two- and multi-phase solid propellants is proposed in this paper. The theoretical solutions for thermal conductivity and specific heat of a homogeneous solid propellant cell in the transient thermal conductivity process are deduced on the condition that one boundary of the cell is heated while others are adiabatic. A homogenization theory and the finite element method are employed to compute the mean temperature and heat flux of a representative volume element (RVE). According to the mean results and the theoretical solutions, the effective thermal conductivity and specific heat of solid propellant can be estimated. A packing algorithm, considering the solid particles (ammonium perchlorate (AP) or aluminum) as spheres or discs, is used to match the size distribution and volume fraction of solid propellants, and some mesoscopic models of two-phase and three-phase solid propellants are established. According to the estimation theory proposed in this paper, the effective thermal conductivity and specific heat of solid propellants are predicted. The effect of AP or Al volume fraction is also discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maxwell J C. A Treatise on Electricity and Magnetism. 3rd ed. New York: Dover Publications, 1954

    MATH  Google Scholar 

  2. Tsao T N G. Thermal conductivity of two phase materials. Indus Eng Chem, 1961, 53(5): 395–397

    Article  Google Scholar 

  3. Cheng S C, Vachon R I. The prediction of the thermal conductivity of two- and three-phase solid heterogeneous mixtures. Int J Heat Mass Trans, 1969, 12(3): 249–264

    Article  Google Scholar 

  4. Lewis T, Nielsen L. Dynamic mechanical properties of particulate-filled polymers. J Appl Polym Sci, 1970, 14(6): 1449–1471

    Article  Google Scholar 

  5. Halpin J C. Stiffness and expansion estimates for oriented short fiber composites. J Composite Mater, 1969, 3(1): 732–734

    Google Scholar 

  6. Agari Y, Uno T. Estimation on thermal conductivities of filled polymers. J Appl Polym Sci, 1986, 32(7): 5705–5712

    Article  Google Scholar 

  7. Agari Y, Ueda A, Nagai S. Thermal conductivity of polyethylene filled with disoriented short-cut carbon fibers. J Appl Polym Sci, 1991, 43(6): 1117–1124

    Article  Google Scholar 

  8. Veyret D, Cioulachtjian S, Tadrist L, et al. Effective thermal conductivity of a composite material: A numerical approach. Trans ASME—J Heat Transfer, 1993, 115: 866–871

    Article  Google Scholar 

  9. Chen M, Buckmaster J, Jackson T L, et al. Homogenization issues and the combustion of heterogeneous solid propellants. Proc Combus Institute, 2002, 29: 2923–2929

    Article  Google Scholar 

  10. Kumlutas D, Tavman I H. A numerical and experimental study on thermal conductivity of particle filled polymer composites. J Thermoplastic Composite Mater, 2006, 19: 441–455

    Article  Google Scholar 

  11. Song Y S, Youn J R. Evaluation of effective thermal conductivity for carbon nanotube/polymer composites using control volume finite element method. Carbon, 2006, 44: 710–717

    Article  Google Scholar 

  12. Adjali M H, Laurent M. Thermal conductivity estimation in non-linear problems. Int J Heat Mass Transfer, 2007, 50: 4623–4628

    Article  MATH  Google Scholar 

  13. Yvonnet J, He Q C, Toulemonde C. Numerical modeling of the effective conductivities of composites with arbitrarily shaped inclusions and highly conducting interface. Composites Sci Technol, 2008, 68: 2818–2815

    Article  Google Scholar 

  14. Fang X Q. Scattering of thermal waves and non-steady effective thermal conductivity of composites with coated particles. Appl Therm Eng, 2009, 29: 925–931

    Article  Google Scholar 

  15. Dede E M. Simulation and optimization of heat flow via anisotropic material thermal conductivity. Comput Mater Sci, 2010, 50: 510–515

    Article  Google Scholar 

  16. Azeem S, Zain-ul-Abdein M. Investigation of thermal conductivity enhancement in Bakelite-graphite particulate filled polymeric composite. Int J Eng Sci, 2012, 52: 30–40

    Article  Google Scholar 

  17. Zain-ul-Abdein M, Azeem S, Shah S M. Computational investigation of factors affecting thermal conductivity in a particulate filled composite using finite element method. Int J Eng Sci, 2012, 56: 86–98

    Article  Google Scholar 

  18. Gitman I M, Askes H, Sluys L J. Representative volume: Existence and size determination. Eng Fract Mech, 2007, 74: 2518–2534

    Article  Google Scholar 

  19. Drugan W J, Willis J R. A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J Mech Phys Solids, 1996, 44(4): 497–524

    Article  MathSciNet  MATH  Google Scholar 

  20. Evesque P. Fluctuations correlations and representative elementary volume (REV) in granular materials. Poudres & Grains, 2000, 11: 6–17

    Google Scholar 

  21. Carslaw H S, Jaeger J C. Conduction of Heat in Solids. Oxford: Oxford Press, 1959

    Google Scholar 

  22. Zhi S J, Sun B, Zhang J W. Multiscale modeling of heterogeneous propellants from particle packing to grain failure using a surface-based cohesive approach. Acta Mech Sin, 2012, 28(3): 746–759

    Article  Google Scholar 

  23. Buckmaster J, Jackson T L, Ulrich M. Numerical modeling of heterogeneous propellant combustion. AIAA 2001-3579: 1–13

    Google Scholar 

  24. Jackson T L, Buckmaster J. Heterogeneous propellant combustion. AIAA J, 2002, 40(6): 1122–1130

    Article  Google Scholar 

  25. Cai W D, Thakre P, Yang V. A model of AP/HTPB composite propellant combustion in rocket-motor environments. Combus Sci Technol, 2008, 180: 2143–2169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianWei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Zhi, S. & Sun, B. Estimation of thermophysical properties of solid propellants based on particle packing model. Sci. China Technol. Sci. 56, 3055–3069 (2013). https://doi.org/10.1007/s11431-013-5368-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5368-1

Keywords

Navigation